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1D Signals and Functions Sunday, January 06, 2002

chapter 1 ANnIntroduction To
Sgndsand Functions

INTRODUCTION

This chapter provides a brief summary of the concepts that are employed in later
chapters.  The student who is familiar with the concepts of rea and complex numbers,
the domain, range, continuity and differentiability of functions, the idea of a complex-
domain andytic function, the sngulaities of complex-doman functions and the
regions of convergence of these functions may choose to skip this chapter.

NUMBERS

Sgnds are often represented by numbers and sgnd processng is therefore
primarily concerned with mathematicad operations on numbers.  In the following, we
define the various types of numbers.

The Natural Numbers

The most dementary set of numbers is the infinite st of nonnegative integers
{0,1,2,3,...¥} where we employ the curly braces {} to enclose the dements of a .
The non-negative integers are defined as the naiurd numbers and the infinite set of
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natural numbers is written as N or N' where the superscript 1 implies that the set of
numbers is one-dimengond; a concept that will become more clear when we shortly
define multidimensiona numbers.

The symbol ¥ is not a number. It is a symbol that is used to indicate that a
sequence, or st of eements extends indefinitely in the indicated direction.  Thus,
the sequence {0,1,2,3,...¥} implies that the sequence continues without limit; thet is
for any arbitrarily large pogtive integer n in the sat there exigs the next largest
integer n+1 in the set and we say that there is an infinite number of eements in the
seguence. We will usudly drop the infinity symbol if its implication in an unbounded
sequence is obvious.

EntireIntegers

Theset {-¥,...,-3,-2,-1,0,1,2,3,...¥} of dl integers, induding the negative
integers, isdenoted 7 or Z* and referred to asthe set of entireintegers. Clearly this
Set dso contains an infinite number of dements.

If dl dementsof asst § arecontainedinaset S, , then we write thisfact as
S1 S. Therefore NI Z.

Rational Numbers

Asuming S 1 S, theremova of theset S of dementsfromtheset S, of
dementsiswritten §/S,. Thus, q1 Z/{0} meansthat q isanon-zero entire
integer.

Theinfinitest Q , or Q', of rationa numbersisthe set of al possible numbers
that can be formed from theratio

P (1.1)
g

suchthat gl Z {0} and pl Z.

The number
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-77 -
10 1.2
13 Q (1.2)
It may be shown that the decimd part of the decimd representation of arationa
number must eventualy recur. For example, in the above,
- 77/13=-5.923076923076...=-5.923076.

Clealy, NI Z1 Q.

Digitd machines are able to exactly represent rational numbers.

Irrational Numbers

There is an infinite st of numbers that cannot be represented by employing ratios
of entire integers, they are the set of so-cdled irraiond numbers. For example, the
ratio p of the crcumference of a circle to its diameter is an irrationd number; so is
J2. Such numbers cannot be represented in decimal form except by employing an
infinite number of digits after the decimal point having no recurring part. For
example, the irrationd number p =3.14257...... canot be written as a rationd
number because there is no repedting pattern of digits after the decima point.
Smilarly, 1.4517=1.4517517517...1 Q where the digits 517 recur without limit.
Conversdy, the number 1.23 is rationd (1.23=123/1001 Q) and can be written
1.230 where the O digit recurs without limit. Digitd machines cannot exactly
represent irrationa numbers.

Real Numbers

A number, of any of the above types, isa 1D real number and can be placed in
one-to-one correspondence with a position on a straight line of infinite length, with
positive numbers extending in one direction and negative numbers in the other
direction. We refer to this set of red numbersas R or R*. A red number is either
rationd or irrationd. Therefore, the set of irrationd numbersissmply theset R/Q .

It turns out to be of consderable practical importance that the irrationa numbers
cannot be exactly represented in adigitd machine; for example, in acomputer. If we
plan on using irrationd numbers, and we often cannot avoid such usein sgnd
processing, then our digital machines can only approximate such numbers and, in
doing so, make errors.
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Multidimensional (MD) Real Numbers

The reader might expect that a textbook about MD signa processing will make use
of MD numbers. In fact, the concept of aMD number is dready familiar from the
notion of a coordinate in a Euclidean plane. The point in the plane that is horjzonta
distance 2 and verticd distance —5 from the origin has coordinate (2.12,- 5=) andis
referred to as a 2-tuple or two-dimensond number. The st of dl such pa'r§of 1D
real numbersis defined as R? and defines the 2D Eudlidean plane. Thered 2-tuple,
or 2D real number, conssts of two ordered 1D red numbers.

We may represent as a 2D Eudlidian plane, of infinite extent in al directions, as
shown in Figure (2.1). Each number in R? may be placed in one-to-one
correspondence with a point in the 2D Euclidean plane and the set of al of the
numbersin R? cover every point in the plane.

FIGURE 21

The 2-tuple Plane  and the 1-tuple Plane

In generd, an N-dimensiond red number isan N-tupleandisany set of N
ordered red numbers. Thus, we write the following 4-tuple, or 4D number, as
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g% 731 213 29 r* (1.3)

Imaginary Numbersand Complex Numbers

It is often necessary in mathemdtics, and this is certanly the case in sgnd
processng, to find the square root of a negative number. Using the axiom tha the
product of two negetive numbers is a postive number, dong with the definition of the
square root operation, implies that the square root of a negative number does not exist
among thereds. For example, J-4 can at best be factored and written as

V4= (1)@ = 1Wa=4-1¢2) (1.4)
Lacking ared solution to J- 1 weddfine
jov-1], (15)

implying that, by definition of the square root operation,
j?=-1 (1.6)
Thenotationin (1.5) dlowsusto write, in (1.4),
J-4=xj2 (L.7)

It follows that the square root of any negative red number is the product of a red
number with the number j. Such numbers ae defined as imaginay numbers.
Equivdently, the infinite set | of imaginay numbers is given by multiplying the esch
dement of theinfinite set of real numbersby j .

(1.8)
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The sum of a 1D real number and a 1D imaginary number, such as (3.4+ jp), is
al1D complex number and theinfinite set of 1D complex numbersiswritten C or
C'. Thereader should have some familiarity with the arithmetic, algebra and
properties of complex numbers.

Complex numbers may be subjected to al of the standard rules of arithmetic that
apply to real numbers. Consequently, wherever the product term (j)(j) appears, asa
result of gpplying the sandard rules of arithmetic, it may be replaced by the redl
number - 1.

Clearly, if theimaginary part v of a1D complex number u+ jv, a,bl R, is
zerothen u+ jv isarea number; therefore the set of real numbers belongs to the set
of complex numbers; thatis, R1 C .

It isusud to represent the set of 1D complex numbersin the so-caled complex
plane, asshownin Figure (2.1) . Thisplaneisof infinite extent in all directions
because both the red and imaginary parts of complex numbers may lie anywhere on a
line of infinite length.

Writing z=u+ jv, where uand v arethered and imaginary partsof z, we
define the magnitude |2 of acomplex number z as

170 Vu? +V? Magnitude (1.9)

which isthe distance of the 1-tuple z=u+ jv from theoriginin the complex lane.
Therefore, |2 issmply the distance M in Figure (2.2).

Theargument B[z] of acomplex number z isdefined as

p[Z]° tan'l(%) (1.10)

andisamply theangle q inFigure(2.1). Clearly, the complex number z may be
described by the two parameters M and g . We adopt the notation

z=Mbq (2.11)

and refer to equation (1.11) asthe polar representation of acomplex number.
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Note that the complex plane C  is not the same as the red Euclidean plane R?;
C contains dements that are complex 1-tuples (suchas 2+ j3 ), whereas R?
contains numbers that are real 2-tuples, such as (such as (2,3) ).

Multidimensional Complex Numbers

Note that multidimensiona complex numbers are defined by direct extension of
thered case. Thus, the complex 2-tuple

((2+j5),(3- j9) (1.12)

belongs to the infinite set of complex 2-tuples and we refer to thisset as C2. In
general, the n-dimensiona complex N-tuple belongs to C" .

Note that a complex N-tupleis not the same thing asavector. An N-tupleis
smply anumber or pointin C" whereas a vector has both magnitude and direction.

Geometric interpretations of multidimensiona complex numbers are not eesly
visudized by most humans! The number in (1.12) can be thought of asexidting a a
point in a4D plane for which there are two red and two imaginary axes but our
ability to imagine a gpace in which dl four axes are mutudly orthogond is beyond us.
For this reason, geometric visudization will gve way to algebra when representing
regionsin CN, N>1.

Intervals and Regions

Werefer tointervason thered line R, areasin R?, volumesin R* and other
regionsin higher dimensons.

Theclosed interva [a; b] onthered lineisthe set of rea numbersx satisfying
therdation a£ x £b, whereitisimpliedtha a£b. Note that the boundary points
of theintervad, aand b, areincluded in the interva. We refer to aregion that
includes its boundary points as being closed. Otherwise the region is said to be open
and does not include its boundary points. The corresponding openintervd is
denoted (a; b) and istherefore the set of redl numbers x satifying the relation
a<x<b.
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Weidentify 2D rectanglesand 3D solid-rectangles. Inthe 3D case, the closed
solid-rectangle is given by

RI ={x=(x1,32,x3|(xl [a;b]),(x21 [c;d]),(>8T [e f1)} (1.13)

which we write, for brevity, in terms of its opposite vertices as
R: =[(ac,e),(b,d,f)]. A smilar expression gopliesfor the 2D rectangle.

Circlesand Discs

Thedirde of unit radiusin R*with centre a the origin (0,0) is denoted O® and is
therefore defined as

O?° {x=(x1,x2)T R?|x1?+x2% =1} (1.14)

However, thecirdein C' with centre & the origin (0,0) isdenoted T* andis
therefore defined as

T?o{z=@u+jyi C'|U*+v* =1 (1.15)

and isshown in Figure (2.2). The distance of thiscomplex number z fromthe
origin is the magnitude of that complex 1-tuple number | z| SO We may write reaion
(1.15) as

T1:{2||z|:j} (1.16)

FIGURE 22

The Unit Cirdle  and the Closed Unit Disc  inthe 1D Complex Plane
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Similarly, the 2D dosed unit disc U in C* is defined as
Ue{z||l7£1 (1.17)

where the bar over U* impliesthat the region is dosed; that is, it includes the
boundary region in equation (1.16). The open unit discU™* in C* isgiven by

ue{z||l4=1 (118)
and therefore
U?=U?+T? (1.19)

where the plus Sign means the union of the dementsin the two sats.

Polycircles and Polydiscs

For higher dimensions, we refer to the circles and discs regions as polycircles and
polydiscs. Some care must be taken when extending well known shapes from 2D or
3D to higher dimensions.

For example, the N-dimensiond unit cirde, or unit polycirde, in R" isthe
region

TVOUX|X+xX2+..5 =1 (1.20)

and isthe set of dl red N-tuplesthat are unity ‘distance from the origin. For N =3,
this describes dl 3-tuples on the surface of the unit-radius sphere having its centre at
the origin in 3D Euclidean space. Although the 4D sphereis evident from (1.20), the
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4D geometry must rest with the algebra and not with our ability to imagine the shgpe
of the sphericd surfacein 4D.

The unit polycircein C" isgiven, intermsof the N-tuple z © (z, z,,...2,) , by

N
The{zICll =3 (1.22)
where (::|z |=1 meansthe set of complex N-tupleswhere |z =1 and |z,|=1 and ...

z, | =17 Note that this definition is far more restrictive than if we had chosen the
de‘lnltlonof T" to correspond to the much larger region where |zl +22+..2 |:1.

The closed unit polydiscin C" isgiven by

u™ °{z|€2|21|£]} (1.22)

Note that, if |;l>1 forany i=1,2,...N then the corresponding complex N-tuple does
not belongto U™ no matter how smdl the magnitudes of theremaining z,.

ONE DIMENSIONAL SIGNALSOR FUNCTIONS

A onedimensond (1D) sgna may be decribed mathematicaly as afunction of
one independent varidble. The signd may bewritten x(t) where t isthe
independent variable. Weuse t to represent area independent variableand z to
represent a complex independent variable. In the latter case, thesignd or
function iswritten x(z) .

The Domain, Extent and Region of Support of 1D Signals

Domain

Thedomain of alD sgnd x(t) , abbreviated asdmn[ x(t) ] , isthe set of t over
whichthesgnd x(t) isdefined. Therange of asigna function , abbreviated
rng[ x(t) ], isthe set of values of that correspond to dmn[ x(t) ].

Example 1
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Thered sgnd function , shown in Figure (2.3), has domain
dmn[ x(t) ]= [a; b] and rng[x(t)]= [c:d] , where a,b,c,d] R*..

FIGURE 23 Domain and Range of a1D Signd

Continuous Domain Signals

Consider 1D signds x(t) for which dmn[ x(t)] = [a;b]T R'. Then x(t) isa
continuous-domain Sgnd if it is defined on a continuum over the closed interva

[a;b] . A morerigorous definition requires thet, for each point t, inside theinterva
[a;b], thesignd x(t) isdefined at al points arbitrarily closeto t,. Thesgnd in
Figure (2.3) is an example of a continuous-domain sgnd.

The above definition extends to the case of complex-domain sgnds x(z) , in
which casethedomain DT C' andthesignd x(z) must be defined a every complex
number inthedomain D.

Discrete-Domain Signals

Let therea domain of a1D dgnd be a (possibly infinite) set of numbers

{....t,,t, t,t b, ...} Thisisequivaent to stating thet the signdl is defined only at
discrete points t,, k1 Z'. Werefer to such asigna as a discrete-domain signd. If
thered varidble t istime, then the Sgnd isreferred to as a discrete-timedomain
signd. We usualy assume that the numbers t, are ordered; that is, t, <t,,,," kT Z*.

Asamatter of notation, we should srictly write the Sgna as a discrete-domain
sequence {x(t,)} . However, the complete sequenceis usudly implied when we
write one eement of the sequence without the curly brackets as x(t,) .

Copyright L.T. Bruton MD SIGNAL PROCESSING
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to,-t, =T, "k (1.23)

where T isared postive congant, then we writethe sgnd as x(KT) whichisa
uniformly-sampled discrete-time sgnd. Notethat x(kT) isonly defined a integer
multiplesof T There exigts an infinite number of continuous-time sgnals x(t) ,

tT R*, that yied agiven discrete-imesignd x(KT) after sampling at integer
multiplesof T .

The Region of Support (ROS) of a Signal

Suppose asignd is defined to equa zero over regions of itsdomain D and let dl such
regions be denoted D,. Thenthesgnd issaidto lack supportin D, and itsROS s
the remaining region of itsdomain D/ D, .

For example, suppose a 1D continuous-domainsignal x(t) hasdomain R* and
X(t)° 0 "t <0 andisnot defined to equa zerofor t 3 0. Then, the ROS of the
sgnd x(t) isthe part of itsdomaingivenby t3 0. Wesay that suichasgnd is
positive-sided.

The Extent of a Signal

The extent of asgnd refersto its ROS.

For the case of real-domain continuous-domain 9gnds, if the ROS extends to
ether or both +¥ and - ¥ , thenthesgnd issaid to be of infinite extent. Otherwise,
itissaid to be of finite extent. For such afinite-extent Sgnd x(t) , there exist finite
numbers t, and t_,with t, >t _, such that

0, n t < tL
xwe (1.24)
0, t > tU

If t istime itiscommon for the word extent to be replaced by the word duration
We say that afinite-extent time-domain Sgnd is dur ation-bounded and that an
infinite- extent time-domain sgnd is dur ation-unbounded.
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132 TheValue of Signalsand Functions
Real-, Complex- and Integer-Valued Signals
If there exists somet in dmn[ x(t) ] such that the value of x(t) isacomplex
number, then x(t) T C* andthesignd x(t) isacomplex-valued signal . Usudly, the
word value is dropped and we say that the Sgnd isacomplex signal.
If x(t) isred-vaued everywheredmn[ x(t)] then x(t)T R* and thesignd x(t) is
areal-valued signal and we say that thesgnd isareal signal.
Example 2
Congder the sgnd
2 ne T .
x(t) © 3t A“ [0:2] (1.25)
0, "tl[-50]
Clearly, x(t) isonly defined over thecdosed intervd [- 5;2] and
therefore dmn[ x(t) ]=[- 5;2] . The ROY x(t) ]=[0;2] and the range
of x(t) isgivenby rng[ x(t) ]=[0;12]. Also, x(t) isared 9gnd of
finite extent.
Example 3
Condder the sgnal
x(t) = cos(t) + jsin(t), "tT RY, jo+-1 (1.26)
asshown in Figure 2.2. Thesignd isdefined " tT R* and therefore
dmn[x(t)] =R".
FIGURE 24 A 1D Complex Signal

Clearly, there exists values of t such that x(t) iscomplex-vaued,
corresponding to the valuesof t where sin(t) * 0. Therefore, x(t)
isacomplex signdl of infinite extent. The magnitude function |X(t))|

Copyright L.T. Bruton MD SIGNAL PROCESSING 13



Filename: chaplp

14

1D Signals and Functions Sunday, January 06, 2002

and the argument function Bx(t) of thecomplex Sgnd x(t) are
given by

|X(1)|° = cos?(t)+ sin(t) = 1 (1.27)
g SN,
PX(t) =tan (Cos(t)) t (1.28)

implying thet the rng[ X(t)] = O", the circle of unit radius and centred
atheoriginin C*.

Single-Valued Functions and Signals

A function issngle-vaued if, for each and every defined value of the independent
vaiable t, x(t) hasauniquevaue.

Example 4

Thesigna
x(t)=+ft, "tT R (1.29)

isnot sngle-valued because, for al non-zero t , there are two
possble vauesfor x(t) . For example, if t =4 then x(t) =+2.
Unless gated otherwise, al sgnds are assumed to be single-vaued
functions of the independent varaible(s).

Continuous-Valued and Discontinuous-Valued Signals and Functions

We have so far considered the continuous and discrete nature of the domain of a
sgnd. We now discuss the continuous or discrete nature of the value (and associated
range) of ared-vaued Sgnd. Fird, we need to define the exigence of alimit of a

function.
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Existence of the Limit at a Point:

Thelimit L(t,) of afunction x(t), at the point t, , is defined as
L(t; ) lim[X(t)] (1.30)

Thelimit L(t,) issaid to exist at the point t, iff (if and only if) it isunique.
We use the word unique to mean single-vaued and finite.

Consider, for example, the case wherethe domain tT R*. Let t,, and t,, be
arbitrarily closeto t, with t,, lessthan t, and ty, grester than t,, where t, isin
the domain of thesignd . Suppose that left-hand limit L(t,,) and the right hand limit
L(t,) areunequal. Thenthelimit L(t,) isclearly not uniquea t, becauseitsvaue
depends on the direction in which the limit is taken; thelimit L(t,) therefore does
not exist a the point t, .

Consder now the more generd case of afunction or Sgnd having a complex

domaingivenby x(z), zI C'. Apoint z,1 C* can be approached in any direction
in C* when defining the limit &t of acomplex domain function according to

L(z)° lim{x(2)] (1.31)

Thislimit exigsiff the same unique limit isobtained for al directions, as
illustrated in Figure 2.4.

The définitions of the limit in equations (1.30) and (1.31) do not require t (or z)
totakeonthevduet, (or z, ) but only to approach arbitrarily closeto t, (or z).
Interegtingly, it is therefore possible for the limit to exist at the point t, (or z,)
when t, (or z,)isinfinitein magnitude or simply not defined.

Continuous-Valued at a Point

For asignd or function x(t) to be continuous-valued at apoint t, , thelimit L(t,)
must exist and the (unique) value of L(t,) must equa the value x(t,) of the sgnd or
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functiona t,. Thisisastronger condition than Smply the existence of the limit.
Thus asignd x(t), tT R*, iscontinuous-vaued at a point t, in itsdomain

If thelimit L(t,) existsand isgiven by
L(t) © im[X()] = x(t,) (1.32)

This condition ensuresthet x(t) iscontinuous-valued &t t,. Such afunction must
therefore be defined &t t,, .

A sgnd or function that is not continuous-vaued a the point t, issaid to have a
discontinuity & t, .

The définition in (1.32) aso gpplies aso to Sgnasover complex domains, such as
X(z) a thepoint z,.

Continuous-Valued Signals or Functions

Definiion: x(t), tT R*, iscontinuous-valued inits doman if and only if it is
continuous-vaued a every point t, initsdomain.

A sgnd (or function) that is not continuous-valued is said to be discontinuous
valuedinitsdomain, asillugrated in Figure (2.5).

FIGURE 25

16

A Discontinuous Vdued 1D Red Signd

Example 5

Thefunction cos(t)u(t), tT R*, .isdiscontinuous-vaued becauseits limit is not
uniquea t =0 whereasthefunction sin(t)u(t) is continuous-vaued becauseits
limitisunique " tT R*.

The above definition of continuous-vaued aso appliesto sgnas x(z) over
complex domains z.
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133 Differentiable and Analytic Signals and Functions

It is often important that we know the conditions under which signds or functions
aredifferentiable in their domains.

Derivative At A Paint

Real Domain Functions: Thederivativeof a red domain signd or function x(t),
tl R*, athepoint t, initsdomain, isdefined asfollows

% [x,)]° lim X0 X U (1.33)

©®og t-1, H

Thisfunction issaid to be differentiableat t, iff thederivative (thet is, the
limit) ineguation (1.33) exists Equivdently, the derivaive exigsiff thelimitin
equation (1.35) is both finite and unique.

We gtate, without proof, that afunction x(t) thet isdifferentigble a t,isaso
continuous-valued & t,. The converseisnot necessarily true. For example, the
function x(t) © [sin(t)|, tT R, iscontinuous-valued but its derivatives at integer
multiplesof 2p are not unique. [ For further reading, consder Elements of Complex
Variables, Pennes, Holt, Reinhart and Winston, 1976, p95].

Example 6

Congder the unit step sgna

1, t3 R
’tothl

u(t)° ,
® 0, t<O

(1.34)

(1.36),

Thisfunction has a limit that does not exist at t =0 becausethe

limit thereis not unique; the left-sdelimitis L(0-) = 0 and theright

gdelimit L(0+) = 1. Itfollowsthat u(t), asdefinedin (1.34), isa
discontinuous-vaued function having adiscontinuity & t = 0.
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It isaso easy to show that the limit in equation (1.33) isnot unique
a t=0. Theleft-9delimitis ¥ whereastheright-gdelimit isO.
Therefore, the limit in equation (1.33) is not unique and

consequently the function is not differentiable at thepoint t =0 in
its domain and therefore is a non-differentiable function. Itiseasy to
show that dl discontinuous-vaued functions are nont-differentiable.

Example 7
Thefunction
xtely, tT R (1.35)

is continuous-vaued because its limit isfinite, unique and equd to
x(t,), "t,1 R*. However, it is not differentiable because the limit
in equetion (1.33) isnot uniquea t, =0, being equd to 1 for the
right-sde limit and -1 for the left-sde limit about t, in equetion
(1.33).

Derivatives of Complex Domain Functionsan Analytic Functions: The
derivative of acomplex domain signd or function x(z), zI C*, & apoint z, inits
domain is defined as

(1.36)

e ey i

d . ex(2)-
Gl mgt

In generd, the derivatives of functions over complex domains z are complex
functions. Mogt importantly, there is an infinite number of derivatives that exist at
any point z, because the limit may approach fromany directionin C'.

A continuous-vaued function x(z), zI C', issaid to be analytic at the point z,
iff it isdifferenticble a the point z, . It issaid to be analyticin itsdomain if itis
differentiable everywhere inits domain. If we smply say that afunction is andytic,
we imply that it isanalytic in itsdomain. (Synonymsfor andytic are holomor phic,
regular and monogenic). It therefore followsthat a function is analytic iff its
derivative is finiteand unique throughout its domain.
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Andytic functions are avery specid class of functions that are of mgjor
importance in the theory, analyss and design of linear sysems. For many
aoplications, the underlying theory requires that a complex function be andytic.

The Cauchy-Reimann conditions provide the necessary and sufficient condtions
for acomplex function x(z) to be andytic and are expressed asfollows. Writing

z=s +jw, s,wi R (1.37)
it follows that we may write any function of acomplex varigblein theform
X(z) =x(s +jw)=u(s W)+ jv(s w) (1.38)

whereu and v arered functionsof s and w. Then, x(z) isandyticif and only
if

WM ad | M=V cAUCHY-REIMANN CONDITIONS (1.39)

s qw w Ts

The interested reader may refer to [Sneddon, p121]. Some remarks are in order.
Firgt, that functions of acomplex variable must be highly congrained in their red and
imaginary partsin order to be andytic. Second, the tractable development of circuits
and systems often requires that the describing complex functions be andytic.

It was dso shown by Cauchy that andytic functions are repeatably differentiable
everywherein their domain; that is, dl the derivatives of an anaytic function

2—:[x(z)], k=1,23,...¥ (1.40)

exig and are therefore unique and finite.

Taylor's Power Series Expansion of Analytic Functions

The exigence of dl higher order derivatives according to equation (1.40) dlowed
Taylor to obtain atruly remarkable result. Given any disc of radius Rand centre a
in C', wherethat disc liesentirely in the domain of an analytic function,

(=42 el

[ (z)] S (1.41)
afd
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This result is exact. It is truly remarkable because it dates that we can find the vaue
of an andytic function anywhere in the disc just by knowing dl of its derivatives &
the centre of the disc. It follows directly that equation (1.43) is an infinite series
involving condant-valued increesing derivaives of x(z), evauaed a the centre of
the disc. It follows from equation (1.41) that any analytic function in the disc (that
liesin the analytic region) may be written as a convergent power series

X(2) =c,+c¢(z a)+c,(z- a)*+c(z- a°+... (1.42)

where ¢, are congtants. Obvioudy, the ¢, inequation (1.42) consst of thefactorid
and derivative terms in equation (1.41). Often, we know that the function of interest
isandytic a the origin so that we may choose a =0 in the above equation, obtaining
the following Taylor Power Series about the origin

X(2) =¢, +cz+C, 72 +C, 20 +.. ., (1.43)

otherwise known as the Maclaurin Series.

Note that, dthough dl of the abovementioned disc isin the domain of the anaytic
sgnd, the andytic region is usudly much larger than any disc that can befound. In
fact, one can place discs having many different centres a andradii R to cover the
andytic region and write adifferent Taylor Seriesfor each one, describing a different
convergent power series that describes x(z) exactly in each disc.

To summarize, the Maclaurin Power Seriesin equation (1.43) may be used to
describe any andytic function x(z) of acomplex variable that isandytic a the origin
z=a. Thispowerful result underpins much of the theory upon which this subject
ress. It explains why polynomias of complex varigbles are centra to so many
andysis problem.

Singularities and The Fundamental Theorem of Algebra

Singularities are defined asregionsin C* where x(z) is non-andytic and are
known as singularitiesof x(z). Inthe caseof 1D functions, it can be shown that
such regions are isolated points z, , referred to asisolated singularities. (For theMD
case, N >1, sngularities are not restricted to isolated N-tuplesin C" )
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Polynomial Functions

Taylor's Series leads us to the important conclusion that andytic functions can be
represented in their discs of convergence by power series that are polynomialsin the
independent variable z . We can draw some immediate and important conclusions.

Firg, any congtant- coefficient finite-degree polynomid
N
P(2)=a c(z- a)" (1.44)
k=0

must be andlytic throughout C* because it contains a finite number N of finite-
vaued (differentiable) terms ¢, (z- a)“. Thus, only infinite length polynomials can
be non-analyticin C".

Inver se Finite Length Polynomials Functions

Let us now congder a particularly rdlevant class of function, which istheinverse

finite-length polynomia function
le) (1.45)
where Q(2) isafinite degree polynomid
M
Q@ =abz (1.46)

k=0

Now, it is generdly possible (athough tedious) to carry out the long divison on
equation (1.46) to arrive & an equivadent infinite power series representation of the
form

1

oD dz’ (1.47)

J

Qox

0
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We often need to know whether, and in wha regions of C', we can integrate or
differentiate inverse polynomid functions of this type. To answer this quedion, we
need to know where such inverse finite-degree polynomias have their sngularities,
thet is, what vaues of z given the condants b,, correspond to the singularities of

¥Q(2) ?
The Fundamental Theorem of Algebra

Fortunately, the so-cdled Fundamentad Theorem of Algebra (FTA) provides the
answver to the above question. This theorem dates that any polynomial of finite
degree M isalwaysfactorizable inthe form

M N
Q@° a bz =k, O (z- z) (1.48)
k=0 k=1
wherethe M numbers z, T C', k=1,2,3,...M , aecdled the zeros of Q(z) because
Q(z)=0, k=123,...M (1.49)

Clearly, theratio of polynomids P(z)/Q(z) equds zero at the zerosof P(2)
and isof infinite magnitude a the zerosof Q(z) . Thezerosof Q(z) arereferred to
asthe poles of therationd function P(2)/Q(2).

It may easly be shown, by partid fraction expanson and for the case of digtinct
zexos, that equation (1.47) may be expressed in the form

R R
1 =g L R,z1 C (1.50)
Q(Z) j=1 Z- Zj

] I
wheretheterms R, are referred to asthe residues of the expansion and theterms  z,
asthepolesof 1/Q(z). Theindividud terms

R.
i (151)
Z- Z]-

are eadly shown to be andytic everywhere except & the polewhere z=z, and
therefore equation (1.50) is andytic everywhere except a the M poles.

It followsthat rational functions P(z)/Q(2z) are analytic except at the M
poles; we may thereforeintegrate or differentiate such rational functions over
regionsof C* that are devoid of poles. This property of rationd functions of a
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complex variable is centra to the subject at hand and particularly to use of Laplace,
Fourier and Z transforms.

Fortunately, widdly available robust dgorithms exig, in the case of 1D functions,
for finding the poles.

Region of Convergence (ROC)

A ROC of apossibly-infinite power series, such as eguation (1.46), issmply a
regionin C* corresponding to the values of z where the power series converges. That
is, aregion whereitisanaytic. Thediscthat isused inthe Taylor Series of
equation(1.41) and Maclaurin Series of equation (1.43) isaROC and mudt liein the
andytic region. ThediscisaROC provided thet it does not contain any of the poles.
In generd, thereis an infinite number of such discsthat can be defined on C* to
avoid the polar points.

We also note that finite-length polynomials do not have poles and are andytic
everywherein C'.

Example 8

Congder therationd function

P@_zt1 i (1.52)
Qlzg z-1

Then P(z)=z+1 and Q(z)=z-1. Thezeroof P(z) isa -1+j0 andthe
zeroof Q(z) isa 1+ jO and therefore the pole of therationa function P(z)/Q(2)
isa 1+ jO . Thepole-zero diagram is shown in Figure (2.6).

FIGURE 26

Pole-Zero Diagram for
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The region of analyticity is the complete complex plane with the exception of the
pole location at.1+ jO

Consder now the infinite series for thisrationd function. We obtain, by long
divison,

Q(z)=il=z'1(1+ Z '+ 72+ 7%+..¥) (1.53)

which isan infinite-series representation. Then, multiplying by P(z) gives

@———( Z+0)Z' A+ 7+ 27+ 7+ %) 1+aéo 230 aéo +...¥

Q2 z-1 g_z 8Zﬂ 8_@
which is in the form of the Madaurin Series of equation (1.45) but with z replacing
1z. Equation (1.53) therefore has its ROC in any disc having its centre at the origin
(Yz=0+j0 ) that does not enclose the pole at (1+ jO) . Thus, the radius of the disc
mud lie in the intevd O£ R<1. Therefore, the ROC of equation (1.53) is given by
the disc of largest radius, as shown in Figure (2.6) , corresponding to the condition

<1

or, equivdently,

14>1

FIGURE 2.7

24

Region of Convergence of inthe complex varigble

Copyright L.T. Bruton MD SIGNAL PROCESSING 24



