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CHAPTER 1     An Introduction To 
Signals and Functions 

 1.1 INTRODUCTION 

This chapter provides a brief summary of the concepts that are employed in later 
chapters.  The student who is familiar with the concepts of real and complex numbers, 
the domain, range, continuity and differentiability of functions, the idea of a complex-
domain analytic function, the singularities of complex-domain functions and the 
regions of convergence of these functions may choose to skip this chapter. 

 1.2 NUMBERS 

Signals are often represented by numbers and signal processing is therefore 
primarily concerned with mathematical operations on numbers.  In the following, we 
define the various types of numbers. 

 The Natural Numbers 

The most elementary set of numbers is the infinite set of non-negative integers 
{0,1,2,3, }∞…  where we employ the curly braces {} to enclose the elements of a set.  
The non-negative integers are defined as the natural numbers and the infinite set of 
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natural numbers is written as ¥  or 1¥  where the superscript 1 implies that the set of 
numbers is one-dimensional; a concept that will become more clear when we shortly 
define multidimensional numbers.   

The symbol ∞   is not a number.  It is a symbol that is used to indicate that a 
sequence, or set of elements, extends indefinitely in the indicated direction.   Thus, 
the sequence {0,1,2,3, }∞… implies that the sequence continues without limit; that is, 
for any arbitrarily large positive integer n in the set there exists the next largest 
integer n+1 in the set and we say that there is an infinite number of elements in the 
sequence. We will usually drop the infinity symbol if its implication in an unbounded 
sequence is obvious. 

Entire Integers  

The set  { , , 3, 2, 1,0,1,2,3, }−∞ − − − ∞… …  of all integers, including the negative 
integers, is denoted  ¢  or 1¢  and referred to as the set of entire integers.  Clearly this 
set also contains an infinite number of elements.  

If all elements of a set 1S  are contained in a set 2S , then we write this fact as 
1 2S S⊂ .  Therefore, ⊂¥ ¢ . 

Rational Numbers 

Assuming 1 2S S⊂ , the removal of the set 1S  of elements from the set 2S  of 
elements is written 1 2/S S .  Thus, /{0}q ∈¢  means that q  is a non-zero entire 
integer. 

The infinite set ¤  , or 1¤ , of rational numbers is the set of all possible numbers 
that can be formed from the ratio 

 
p
q

 (1.1) 

 

such that  /{0}q ∈¢  and p ∈¢ . 

The number  
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 177
13

−
∈¤  (1.2) 

It may be shown that the decimal part of the decimal representation of a rational 
number must eventually recur.  For example, in the above, 

77 13 -5.923076923076 =-5.923076− = … . 

Clearly, ⊂ ⊂¥ ¢ ¤ . 

Digital machines are able to exactly represent rational numbers.   

 

Irrational Numbers 

There is an infinite set of numbers that cannot be represented by employing ratios 
of entire integers; they are the set of so-called irrational numbers.  For example, the 
ratio π  of the circumference of a circle to its diameter is an irrational number; so is   

2 .  Such numbers cannot be represented in decimal form except by employing an 
infinite number of digits after the decimal point having no recurring part.  For 
example, the irrational number 3.14257......π =  cannot be written as a rational 
number because there is no repeating pattern of digits after the decimal point.   
Similarly, 1.4517 1.4517517517= ∉… ¤  where the digits 517  recur without limit.  
Conversely, the number 1.23  is rational (1.23 123/100= ∈ ¤ ) and can be written 
1.230  where the 0 digit recurs without limit.   Digital machines cannot exactly 
represent irrational numbers. 

Real Numbers  

A number, of any of the above types, is a 1D real number and can be placed in 
one-to-one correspondence with a position on a straight line of infinite length, with 
positive numbers extending in one direction and negative numbers in the other 
direction.  We refer to this set of real numbers as ¡  or 1¡ .  A real number is either 
rational or irrational. Therefore, the set of irrational numbers is simply the set /¡ ¤ . 

It turns out to be of considerable practical importance that the irrational numbers 
cannot be exactly represented in a digital machine; for example, in a computer.  If we 
plan on using irrational numbers, and we often cannot avoid such use in signal 
processing, then our digital machines can only approximate such numbers and, in 
doing so, make errors. 
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Multidimensional (MD) Real Numbers  

The reader might expect that a textbook about MD signal processing will make use 
of  MD numbers.  In fact, the concept of a MD number is already familiar from the 
notion of a coordinate in a Euclidean plane.  The point in the plane that is horizontal 
distance 2 and vertical distance –5 from the origin has coordinate 

1
(2.12, 5 )

3
−  and is 

referred to as a 2-tuple or two-dimensional number.  The set of all such pairs of 1D 
real numbers is defined as 2¡  and defines the 2D Euclidean plane.  The real 2-tuple, 
or 2D real number, consists of two ordered 1D real numbers. 

We may represent  as a 2D Euclidian plane, of infinite extent in all directions, as 
shown in Figure (2.1).  Each number in  2¡ may be placed in one-to-one 
correspondence with a point in the  2D Euclidean plane and the set of all of the 
numbers in 2¡  cover every point in the plane. 

FIGURE  2.1 The 2-tuple Plane    and the 1-tuple Plane   

 

 

 

 

 

 

 

 

 In general, an N-dimensional real number is an N-tuple and is any set of  N  
ordered real numbers.  Thus, we write the following 4-tuple, or 4D number, as  
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 43
1.3 2

4
π − ∈ 

 
¡  (1.3) 

 

Imaginary Numbers and Complex Numbers 

It is often necessary in mathematics, and this is certainly the case in signal 
processing, to find the square root of a negative number.  Using the axiom that the 
product of two negative numbers is a positive number, along with the definition of the 
square root operation, implies that the square root of a negative number does not exist 
among the reals.  For example,  4−  can at best be factored and written as   

 4 ( 1)(4) 1 4 1( 2)− = − = − = − ±  (1.4) 

Lacking a real solution to 1−  we define 

 1j ≡ − , (1.5) 

  implying that, by definition of the square root operation, 

 2 1j = −  (1.6) 

  The notation in (1.5)  allows us to write, in (1.4), 

 4 2j− = ±  (1.7) 

It follows that the square root of any negative real number is the product of a real 
number with the number j .  Such numbers are defined as imaginary numbers.  
Equivalently, the infinite set I of imaginary numbers is given by multiplying the each 
element of the infinite set of real numbers by j . 

  (1.8) 
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The sum of a 1D real number and a 1D imaginary number, such as ( )3.4 jπ+ ,  is 
a 1D complex number and the infinite set of 1D complex numbers is written £  or 

1£ .   The reader should have some familiarity with the arithmetic, algebra and 
properties of complex numbers.   

Complex numbers may be subjected to all of the standard rules of arithmetic that 
apply to real numbers.  Consequently, wherever the product  term (j)(j)  appears, as a 
result of applying the standard rules of arithmetic, it may be  replaced by the real 
number 1−  .  

Clearly, if the imaginary part v  of a 1D complex number u jv+ ,  ,a b ∈ ¡ ,  is 
zero then u jv+   is a real number; therefore the set of real numbers belongs to the set 
of complex numbers; that is,  ⊂¡ £  .  

It is usual to represent the set of 1D complex numbers in the so-called complex 
plane , as shown in Figure (2.1) .  This plane is of infinite extent in all directions 
because both the real and imaginary parts of complex numbers may lie anywhere on a  
line of infinite length. 

Writing z u jv= + ,  where  u and  v  are the real and imaginary parts of  z , we 
define the magnitude  z   of a complex number  z  as 

 2 2z u v≡ +          Magnitude (1.9) 

which is the distance of the 1-tuple  z u jv= +   from the origin in the complex lane.  
Therefore, z  is simply the distance  M  in Figure (2.1). 

    The argument  [ ]z∠   of a complex number  z  is defined as 

 1[ ] tan ( )
v

z
u

−∠ ≡  (1.10) 

 

and is simply the angle  θ   in Figure (2.1).   Clearly, the complex number  z  may be 
described by the two parameters  M  and θ  .  We adopt the notation 

 z M θ= ∠  (1.11) 

and refer to equation  (1.11) as the polar representation of a complex number.    
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Note that the complex plane £   is not the same as the real Euclidean plane 2¡ ;    
£  contains elements that are complex 1-tuples  (such as 2 3j+  ) , whereas  2¡   
contains numbers that are real 2-tuples, such as (such as (2,3) ). 

 

 Multidimensional Complex Numbers 

Note that multidimensional complex numbers are defined by direct extension of 
the real case.  Thus, the complex 2-tuple   

 ( )(2 5),(3 8)j j+ −  (1.12) 

belongs to the infinite set of complex 2-tuples and we refer to this set as 2£ .  In 
general, the n-dimensional complex N-tuple belongs to N£ . 

  Note that a complex N-tuple is not the same thing as a vector.  An N-tuple is 
simply a number or point in N£  whereas a vector has both magnitude and direction.  

Geometric interpretations of multidimensional complex numbers are not easily 
visualized by most humans !  The number in (1.12) can be thought of as existing at a 
point in a 4D plane for which there are two real and two imaginary axes but our 
ability to imagine a space in which all four axes are mutually orthogonal is beyond us. 
For this reason, geometric visualization will give way to algebra when representing 
regions in  N£ , 1N > . 

 1.2.1 Intervals and Regions  

We refer to intervals on the real line 1¡ , areas in 2¡ , volumes in 3¡  and other 
regions in higher dimensions. 

The closed interval  [a; b] on the real line is the set of real numbers x  satisfying 
the relation a x b≤ ≤ , where it is implied that a b≤ .  Note that the boundary points 
of the interval, a and  b ,  are included in the interval. We refer to a region that 
includes its boundary points as being closed.  Otherwise the region is said to be open 
and does not include its boundary points.  The corresponding open interval is  
denoted  (a ; b)  and is therefore the set of real numbers  x  satisfying the relation  
a x b< < .   
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We identify 2D rectangles and 3D solid-rectangles.  In the 3D case, the closed 
solid-rectangle is given by 

 { ( 1, 2, 3) ( 1 [ ; ]),( 2 [ ; ]),( 3 [ ; ])}x x x x x a b x c d x e f= = ∈ ∈ ∈3
recR  (1.13) 

which we write, for brevity, in terms of its opposite vertices as  
[( , , ),( , , )]a c e b d f=3

recR .  A similar expression applies for the 2D rectangle. 

 

Circles and Discs 

The circle of unit radius in 2¡ with centre at the origin (0,0)  is denoted 2O  and is 
therefore defined as 

 2 2 2 2{ ( 1, 2) | 1 2 1}O x x x x x≡ = ∈ + =¡  (1.14) 

However, the circle in 1£  with centre at the origin (0,0)  is denoted 1T  and is 
therefore defined as 

2 1 2 2{ ( ) | 1}T z u jv u v≡ = + ∈ + =£                                          (1.15) 

and is shown in Figure (2.2).  The distance of this complex number  z   from the 
origin is the magnitude of that complex 1-tuple number  z   so we may write relation  
(1.15) as 

 1 { | 1}T z z= =  (1.16) 

 

FIGURE  2.2 The Unit Circle    and the Closed Unit Disc    in the 1D Complex Plane 
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Similarly, the 2D closed unit disc 1U   in 1£  is defined as 

 1 { | 1}U z z≡ ≤  (1.17) 

where the bar over 1U  implies that the region is closed; that is, it includes the 
boundary region in equation (1.16).  The open unit disc 1U  in 1£   is given by 

1 { | 1}U z z≡ =                                                                         (1.18) 

and therefore 

 2 2 2U U T= +  (1.19) 

where the plus sign means the union of the elements in the two sets.   

 

Polycircles and Polydiscs 

For higher dimensions, we refer to the circles and discs regions as polycircles and 
polydiscs.  Some care must be taken when extending well known shapes from 2D or 
3D  to higher dimensions.   

For example, the N-dimensional unit circle, or unit polycircle, in  N¡   is the 
region 

 2 2 2
1 2{ | 1}N

NT x x x x≡ + + =…  (1.20) 

and is the set of all real N-tuples that are unity 'distance' from the origin.  For 3N = , 
this describes all 3-tuples on the surface of the unit-radius sphere having its centre at 
the origin in 3D Euclidean space.  Although the 4D sphere is evident from (1.20), the 
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4D geometry must rest with the algebra and not with our ability to imagine the shape 
of the spherical surface in 4D. 

The unit polycircle in N£  is given, in terms of the N-tuple 1 2( , , )Nz z z≡z … , by 

 1
1

{ | 1}
N

N

i
T z

=
≡ =∩z  (1.21) 

where 
1

1
N

i
i

z
=

=∩  means the set of complex N-tuples where 1 1z =  and 2 1z =  and … 
1Nz = .  Note that this definition is far more restrictive than if we had chosen the 

definition of NT  to correspond to the much larger region where 2 2 2
1 2 1Nz z z+ + =… .  

The closed unit polydisc in N£  is given by  

 1
1

{ | 1}
N

N

i
U z

=
≡ ≤∩z  (1.22) 

Note that, if 1iz >  for any 1,2,i N= …  then the corresponding complex N-tuple does 
not belong to NU  no matter how small the magnitudes of the remaining iz .   

 

 1.3 ONE DIMENSIONAL SIGNALS OR FUNCTIONS 

A one dimensional (1D) signal may be decribed mathematically as a function of 
one independent variable.  The signal may be written  ( )x t   where  t  is the 
independent variable.  We use  t  to represent a real independent variable and  z  to 
represent a complex independent variable.  In the latter case,  the signal or 
function is written ( )x z  . 

 1.3.1 The Domain, Extent and Region of Support of 1D Signals 

Domain 

The domain of a 1D signal ( )x t , abbreviated as dmn[ ( )x t ] , is the set of  t over 
which the signal ( )x t  is defined.   The range of a signal function , abbreviated  
rng[ ( )x t ], is the set of values of  that correspond to dmn[ ( )x t ]. 

 Example 1      
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The real signal function , shown in Figure (2.3), has domain 
dmn[ ( )x t  ]= [a; b] and  rng[ ( )x t ]= [c ;d] , where  1, , ,a b c d ∈¡ .. 

FIGURE  2.3 Domain and Range of a 1D Signal 

 

 

Continuous Domain Signals  

Consider 1D signals  ( )x t   for which  dmn[ ( )x t ] =  1[ ; ]a b ∈¡ .  Then  ( )x t   is a 
continuous-domain signal if it is defined on a continuum over the closed interval 
[ ; ]a b  .  A more rigorous definition requires that, for each point 0t   inside the interval 
[ ; ]a b , the signal ( )x t  is defined at all points arbitrarily close to 0t .  The signal in 
Figure (2.3) is an example of a continuous-domain signal. 

The above definition extends to the case of complex-domain signals ( )x z , in 
which case the domain 1D C∈   and the signal ( )x z  must be defined at every complex 
number in the domain D .  

 

Discrete-Domain Signals  

Let the real domain of a 1D signal be a (possibly infinite) set of numbers 

2 1 0 1 2{ , , , , , , }t t t t t− −… … .  This is equivalent to stating that the signal is defined only at 
discrete points 1,kt k ∈ ¢ .  We refer to such a signal as a discrete-domain signal.  If 
the real variable  t  is time, then the signal is referred to as a discrete-time domain 
signal.  We usually assume that the numbers kt  are ordered; that is, 1

1,k kt t k+< ∀ ∈¢ . 
. 

As a matter of notation, we should strictly write the signal as a discrete-domain 
sequence { ( )}kx t .  However, the complete sequence is usually implied when we 
write one element of the sequence without the curly brackets as ( )kx t . 
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If 

 1k kt t T+ − = ,   k∀  (1.23) 

where T  is a real positive constant, then we write the signal as ( )x kT   which is a 
uniformly-sampled discrete-time signal.  Note that ( )x kT  is only defined at integer 
multiples of T    There exists an infinite number of continuous-time signals ( )x t , 

1t ∈ ¡ , that yield a given discrete-time signal ( )x kT  after sampling at integer 
multiples of T . 

The Region of Support (ROS) of a Signal  

Suppose a signal is defined to equal zero over regions of its domain D and let all such 
regions be denoted 0D .  Then the signal is said to lack support in 0D  and its ROS is 
the remaining region of its domain  D/ 0D . 

  For example, suppose a 1D continuous-domain signal ( )x t   has domain 1¡  and 
( ) 0x t ≡  0t∀ <  and is not defined to equal zero for 0t ≥ .  Then, the ROS of the 

signal ( )x t  is the part of its domain given by 0t ≥ .  We say that such a signal is 
positive-sided. 

The Extent of a Signal 

The extent of a signal refers to its ROS. 

For the case of real-domain continuous-domain signals, if the ROS extends to 
either or both +∞  and −∞ , then the signal is said to be of infinite extent.  Otherwise, 
it is said to be of finite extent.  For such a finite-extent signal ( )x t , there exist finite 
numbers Ut  and Lt , with U Lt t> , such that 

 
0,

( )
0,

x t ≡    L

U

t t
t t

∀ <
∀ >

 (1.24) 

 

If  t  is time,  it is common for the word extent to be replaced by the word duration  
We say that a finite-extent time-domain signal is duration-bounded and that an 
infinite-extent time-domain signal is duration-unbounded. 
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 1.3.2 The Value of Signals and Functions 

 

Real-, Complex- and Integer-Valued Signals 

If there exists some t in dmn[ ( )x t ] such that the value of ( )x t  is a complex 
number, then 1( )x t ∈£  and the signal ( )x t  is a complex-valued signal .  Usually, the 
word value is dropped and we say that the signal is a complex signal. 

If ( )x t  is real-valued everywhere dmn[ ( )x t ]  then 1( )x t ∈¡  and the signal ( )x t  is 
a real-valued signal and we say that the signal is a real signal. 

 Example 2 

Consider the signal 

 
23 ,

( )
0,
t

x t ≡     
[0;2]

[ 5;0 ]
t

t −

∀ ∈
∀ ∈ −

 (1.25) 

Clearly, ( )x t  is only defined over the closed interval [ 5;2]−  and 
therefore dmn[ ( )x t ]=[ 5;2]− .  The ROS[ ( )x t ]=[0;2]  and the range 
of ( )x t  is given by rng[ ( )x t ]=[0;12].  Also, ( )x t  is a real signal of 
finite extent. 

 Example 3 

Consider the signal 

 ( ) cos( ) sin( )x t t j t= + ,    1t∀ ∈ ¡ ,  1j ≡ −             (1.26) 

as shown in Figure 2.2.  The signal is defined 1t∀ ∈ ¡  and therefore 
dmn 1[ ( )]x t = ¡ . 

FIGURE  2.4 A 1D Complex Signal 

Clearly, there exists values of t such that ( )x t  is complex-valued, 
corresponding to the values of  t  where sin( ) 0t ≠ .  Therefore, ( )x t  
is a complex signal of infinite extent. The magnitude function ( )x t  
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and the argument function ( )x t∠ of the complex signal ( )x t  are 
given by  

 
2 2 2( ) cos ( ) sin ( ) 1x t t t= + =  (1.27) 

 1 sin( )
( ) tan ( )

cos( )
t

x t t
t

−∠ = =  (1.28) 

implying that the rng 1[ ( )]x t O= , the circle of unit radius and centred 
at the origin in 1£ . 

Single-Valued Functions and Signals 

A function is single-valued if, for each and every defined value of the independent 
variable t ,  x(t)  has a unique value. 

 Example 4 

The signal 

 ( )x t t= ,  1t∀ ∈ ¡  (1.29) 

is not single-valued because, for all non-zero  t , there are two 
possible values for x(t) .  For example, if  4t =  then ( ) 2x t = ± .  
Unless stated otherwise, all signals are assumed to be single-valued 
functions of the independent varaible(s). 

 

Continuous-Valued and Discontinuous-Valued Signals and Functions 

We have so far considered the continuous and discrete nature of the domain of a 
signal. We now discuss the continuous or discrete nature of the value  (and associated 
range) of a real-valued signal.  First, we need to define the existence of a limit of a 
function. 
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Existence of the Limit at a Point: 

 The limit 0( )L t  of a function ( )x t , at the point 0t , is defined as 

 
0

0( ) lim[ ( )]
t t

L t x t
→

≡  (1.30) 

The limit 0( )L t  is said to exist at the point 0t  iff (if and only if) it is unique .  
We use the word unique to mean single-valued and finite. 

Consider, for example, the case where the domain 1t ∈ ¡ . Let 01t  and 02t  be 
arbitrarily close to 0t  with  01t   less than  0t    and  02t   greater than 0t , where  0t  is in 
the domain of the signal  .   Suppose that left-hand limit 01( )L t and the right hand limit     

02( )L t are unequal. Then the limit 0( )L t  is clearly not unique at  0t   because its value 
depends on the direction in which the limit is taken; the limit 0( )L t   therefore does 
not exist at the point  0t  . 

Consider now the more general case of a function or signal  having a complex 
domain given by  ( )x z , 1z ∈£ .  A point  1

0z ∈£  can be approached  in any direction 
in 1£  when defining the limit at  of a complex domain function according to  

 
0

0( ) lim[ ( )]
z z

L z x z
→

≡  (1.31) 

 

This limit exists iff the same unique limit is obtained for all directions, as 
illustrated in Figure 2.4. 

The definitions of the limit in equations (1.30) and (1.31) do not require  t  (or z ) 
to take on the value 0t   (or 0z  ) but only to approach arbitrarily close to 0t   (or  0z ) .  
Interestingly, it is therefore possible for the limit to exist at the point  0t   (or  0z ) 
when 0t   (or  0z ) is infinite in magnitude or simply not defined. 

 

Continuous-Valued at a Point 

For a signal or function ( )x t  to be continuous-valued at a point 0t , the limit 0( )L t    
must exist and the (unique) value of 0( )L t  must equal the value 0( )x t of the signal or 



File name:  chap1p 1D Signals and Functions Sunday, January 06, 2002 

16  Copyright L.T. Bruton  MD SIGNAL PROCESSING 16

function at 0t .  This is a stronger condition than simply the existence of the limit.  
Thus, a signal ( )x t , 1t ∈ ¡ ,  is continuous-valued at a point 0t  in its domain 

   If the limit 0( )L t  exists and is given by 

 
0

0 0( ) lim[ ( )] ( )
t t

L t x t x t
→

≡ =  (1.32) 

This condition ensures that ( )x t  is continuous-valued at 0t .  Such a function must 
therefore be defined at 0t .    

A signal or function that is not continuous-valued at the point 0t  is said to have a 
discontinuity at 0t .   

The definition in (1.32) also applies also to signals over  complex domains, such as  
( )x z  at the point 0z . 

 

Continuous-Valued Signals or Functions 

 Definition:  ( )x t , 1t ∈ ¡ , is continuous-valued in its domain if and only if it is 
continuous-valued at every point  0t  in its domain. 

 A signal (or function) that is not continuous-valued is said to be discontinuous 
valued in its domain, as illustrated in Figure (2.5).  

FIGURE  2.5 A Discontinuous Valued 1D Real Signal 

 

 Example 5 

The function cos( ) ( )t u t ,  1t ∈ ¡ , .is discontinuous-valued because its limit is not 
unique at  0t =   whereas the function sin( ) ( )t u t  is continuous-valued because its 
limit is unique 1t∀ ∈ ¡ . 

The above definition of continuous-valued also applies to signals ( )x z  over 
complex domains z .  
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 1.3.3 Differentiable and Analytic Signals and Functions 

It is often important that we know the conditions under which signals or functions 
are differentiable in their domains. 

Derivative At A Point 

Real Domain Functions : The derivative of  a  real domain signal or function  ( )x t , 
1t ∈ ¡ ,   at the point 0t  in its domain, is defined as follows 

 
0

0
0

0

( ) ( )
[ ( )] lim

t t

x t x td
x t

dt t t→

 −
≡  − 

 (1.33) 

 

This function  is said to be differentiable at  0t   iff  the derivative (that is, the 
limit)  in equation (1.33) exists.  Equivalently, the derivative exists iff  the limit in 
equation (1.35) is both finite and unique. 

We state, without proof, that a function ( )x t  that is differentiable at 0t is also 
continuous-valued at 0t .  The converse is not necessarily true.  For example, the 
function ( ) sin( ) ,x t t≡  1t ∈ ¡ , is continuous-valued but its derivatives at integer 
multiples of  2π are not unique.  [ For further reading, consider Elements of Complex 
Variables, Pennesi, Holt, Reinhart and Winston, 1976, p95]. 

 Example 6 

Consider the  unit step signal 

 
1,

( )
0,

u t ≡    
0
0

t
t

≥
<

,    1t ∈ ¡  (1.34) 

    

(1.36) ,   

This function has a limit that does not exist at 0t =   because the 
limit there is not unique; the left-side limit is  L(0-) = 0  and the right 
side limit  L(0+) = 1 .  It follows that ( )u t , as defined in (1.34), is a 
discontinuous-valued function having a discontinuity at 0t = . 
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It is also easy to show that the limit in equation (1.33) is not unique 
at 0t = .  The left-side limit is ∞  whereas the right-side limit is 0.  
Therefore, the limit in equation (1.33) is not unique and 
consequently the function  is not differentiable at the point  0t =    in 
its domain and therefore is a non-differentiable function.  It is easy to 
show that all discontinuous-valued functions are non-differentiable. 

 Example 7 

The function 

( ) ,x t t≡   1t ∈ ¡                                       (1.35) 

is continuous-valued because its limit is finite, unique and equal to 
0( ),x t  1

0t∀ ∈¡ .  However, it is not differentiable because the limit 
in equation  (1.33) is not unique at 0 0t = , being equal to 1 for the 
right-side limit and -1 for the left-side limit about 0t  in equation 
(1.33). 

 

Derivatives of Complex Domain Functions an Analytic Functions :  The 
derivative of a complex domain signal or function ( )x z , 1z ∈£ , at a point 0z  in its 
domain is defined as  

 [ ]
0

0
0

0

( ) ( )
( ) lim

z z

x z x zd
x z

dz z z→

 −
≡  − 

 (1.36) 

  

In general, the derivatives of functions over complex domains  z   are complex 
functions.   Most importantly, there is an infinite number of derivatives  that exist at 
any point 0z  because the limit may approach  from any direction in 1£ . 

 A continuous-valued function ( )x z , 1z ∈£ , is said to be analytic at the point 0z     
iff it is differentiable at the point 0z  .  It  is said to be analytic in its domain if it is 
differentiable everywhere in its domain.  If we simply say that a function is analytic, 
we imply that it is analytic in its domain.  (Synonyms for analytic are holomorphic, 
regular and monogenic).  It therefore follows that a function is analytic iff  its 
derivative is finite and unique throughout its domain. 
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Analytic functions are a very special class of functions that are of major 
importance in the theory, analysis and design of linear systems.  For many 
applications, the underlying theory requires that a complex function be analytic. 

The Cauchy-Reimann conditions provide the necessary and sufficient condtions 
for a complex function ( )x z  to be analytic and are expressed as follows.  Writing 

 z jσ ω= + ,   1,σ ω ∈ ¡  (1.37) 

it follows that we may write any function of a complex variable in the form  

( ) ( ) ( , ) ( , )x z x j u jvσ ω σ ω σ ω= + = +                                         (1.38) 

where u  and  v  are real  functions of σ   and  ω .   Then, ( )x z  is analytic if and only 
if 

u v
σ ω

∂ ∂
=

∂ ∂
  and   

u v
ω σ

∂ ∂
=

∂ ∂
  CAUCHY-REIMANN CONDITIONS (1.39) 

The interested reader may refer to [Sneddon, p121].  Some remarks are in order.  
First, that functions of a complex variable must be highly constrained in their real and 
imaginary parts in order to be analytic.  Second, the tractable development of circuits 
and systems often requires that the describing complex functions be analytic.    

It was also shown by Cauchy that analytic functions are repeatably differentiable 
everywhere in their domain; that is, all the derivatives of an analytic function 

 [ ( )],
kd

x z
dz

     1,2,3,k = ∞…  (1.40) 

exist and are therefore unique and finite. 

 1.3.4 Taylor's Power Series Expansion of Analytic Functions  

The existence of all higher order derivatives according to equation (1.40) allowed 
Taylor to obtain a truly remarkable result.  Given any disc of radius R and centre a   
in  1£ ,  where that disc lies entirely in the domain of an analytic function,  

 [ ]
0

( )
( ) ( )

!

k k

k z a

z a d
x z x z

k dz

∞

= =

 −
=   

 
∑  (1.41) 
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This result is exact.  It is truly remarkable because it states that we can find the value 
of an analytic function anywhere in the disc just by knowing all of its derivatives at 
the centre of the disc.  It follows directly that equation (1.43) is an infinite series 
involving constant-valued increasing derivatives of ( )x z , evaluated at the centre of 
the disc.  It follows from equation (1.41) that any analytic function in the disc (that 
lies in the analytic region) may be written as a convergent power series 

 2 3
0 1 2 3( ) ( ) ( ) ( )x z c c z a c z a c z a= + − + − + − +…  (1.42) 

where kc  are constants.  Obviously, the kc  in equation (1.42)  consist of the factorial 
and derivative terms  in equation (1.41).  Often, we know that the function of interest 
is analytic at the origin so that we may choose 0a =  in the above equation, obtaining 
the following Taylor Power Series about the origin 

 2 3
0 1 2 3( )x z c c z c z c z= + + + +… , (1.43) 

otherwise known as the Maclaurin Series.  

Note that, although all of the abovementioned disc is in the domain of the analytic 
signal, the analytic region is usually much larger than any disc that can be found.  In 
fact, one can place discs having many different centres  a  and radii  R   to cover the 
analytic region and write a different Taylor Series for each one, describing a different 
convergent power series that describes ( )x z exactly in each disc. 

To summarize, the Maclaurin Power Series in equation (1.43) may be used to 
describe any analytic function ( )x z  of a complex variable that is analytic at the origin 
z a= .   This powerful result underpins much of the theory upon which this subject 
rests.  It explains why polynomials of complex variables are central to so many 
analysis problem. 

Singularities and The Fundamental Theorem of Algebra 

Singularities are defined as regions in 1£  where ( )x z  is non-analytic and are 
known as singularities of ( )x z .  In the case of 1D functions, it can be shown that 
such regions are isolated points 0z , referred to as isolated singularities.  (For the MD 
case, 1N > , singularities are not restricted to isolated N-tuples in N£ .) 
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Polynomial Functions 

Taylor's Series leads us to the important conclusion that analytic functions can be 
represented in their discs of convergence by power series that are polynomials in the 
independent variable  z .  We can draw some immediate and important conclusions.   

First, any constant-coefficient finite-degree polynomial 

 
0

( ) ( )
N

k
k

k

P z c z a
=

= −∑  (1.44) 

must be analytic throughout 1£  because it contains a finite number N  of finite-
valued (differentiable) terms ( )k

kc z a− .  Thus, only infinite length polynomials can 
be non-analytic in 1£ .  

  

Inverse Finite Length Polynomials Functions  

Let us now consider a particularly relevant class of function, which is the inverse 
finite-length polynomial function 

 
1
( )Q z

 (1.45) 

 

where  ( )Q z   is a finite degree polynomial 

 
0

( )
M

k
k

k

Q z b z
=

= ∑  (1.46) 

Now, it is generally possible (although tedious) to carry out the long division on 
equation (1.46) to arrive at an equivalent infinite power series representation of the 
form 

0

1
( )

j
j

j

d z
Q z

∞
−

=

= ∑                                                        (1.47)   
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We often need to know whether, and in what regions of 1£ , we can integrate or 
differentiate inverse polynomial functions of this type.  To answer this question, we 
need to know where such inverse finite-degree polynomials have their singularities; 
that is, what values of  z, given the constants jb ,  correspond to the singularities of  
1 ( )Q z  ?   

The Fundamental Theorem of Algebra  

Fortunately, the so-called Fundamental Theorem of Algebra (FTA) provides the 
answer to the above question.  This theorem states that any polynomial of finite 
degree M  is always factorizable in the form 

 
0 1

( ) ( )
MM

k
k M k

k k

Q z b z b z z
= =

≡ = −∑ ∏  (1.48) 

where the M numbers 1
kz ∈£ , 1,2,3,k M= … , are called the zeros of ( )Q z  because 

 ( ) 0kQ z = ,       1,2,3,k M= …  (1.49) 

Clearly, the ratio of polynomials  ( ) ( )P z Q z   equals  zero at the zeros of  ( )P z   
and is of infinite magnitude at the zeros of  ( )Q z .  The zeros of  ( )Q z  are referred to 
as the poles of the rational function ( ) ( )P z Q z . 

It may easily be shown, by partial fraction expansion and for the case of distinct 
zeros, that equation (1.47) may be expressed in the form 

 
1

1
( )

M
j

j j

R
Q z z z=

=
−∑ ,       1,j jR z ∈ £  (1.50) 

where the terms jR  are referred to as the residues of the expansion and the terms    jz  
as the poles of  1 ( )Q z .  The individual terms 

 j

j

R
z z−

 (1.51) 

are easily shown to be analytic everywhere except at the pole where jz z=   and 
therefore equation (1.50) is analytic everywhere except at the M  poles. 

It follows that rational functions  ( ) ( )P z Q z  are analytic except at the  M  
poles; we may therefore integrate or differentiate such rational functions over 
regions of 1£  that are devoid of poles.    This property of rational functions of a 
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complex variable is central to the subject at hand and particularly to use of Laplace, 
Fourier and Z transforms.  

Fortunately, widely available robust algorithms exist, in the case of 1D functions, 
for finding the poles. 

Region of Convergence (ROC) 

A ROC of a possibly-infinite power series, such as equation (1.46), is simply a 
region in 1£  corresponding to the values of z where the power series converges.  That 
is, a region where it is analytic.  The disc that is used in the Taylor Series of 
equation(1.41) and Maclaurin Series of equation (1.43) is a ROC and must lie in the 
analytic region.  The disc is a ROC provided that it does not contain any of the poles.  
In general, there is an infinite number of such discs that can be defined on 1£  to 
avoid the polar points. 

We also note that finite-length polynomials do not have poles and are analytic 
everywhere in 1£ .     

 

 Example 8 

Consider the rational function 

 
( ) 1

,
( ) 1

P z z
Q z z

+
=

−
   1z ∈£  (1.52) 

 

Then  ( ) 1P z z= +   and  ( ) 1Q z z= −  .  The zero of  ( )P z   is at  1 0j− +   and the 
zero of  ( )Q z   is at  1 0j+   and therefore the pole of the rational function ( ) ( )P z Q z    
is at  1 0j+  .  The pole-zero diagram is shown in Figure (2.6). 

FIGURE  2.6 Pole-Zero Diagram for   
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The region of analyticity is the complete complex plane with the exception of the 
pole location at.1 0j+    

Consider now the infinite series for this rational function.  We obtain, by long 
division, 

 1 1 2 31
( ) (1 )

1
Q z z z z z

z
− − − −= = + + + + ∞

−
…  (1.53) 

which is an infinite-series representation.  Then, multiplying by  ( )P z   gives 
2 3

1 1 2 3( ) 1 1 1 1
( 1) (1 ) 1

( ) 1
P z z

z z z z z
Q z z z z z

− − − −+      = = + + + + + ∞ = + + + + ∞     −      
… …  

which is in the form of the Maclaurin Series of equation (1.45) but with  z   replacing  
1 z .  Equation (1.53) therefore has its ROC in any disc having its centre at the origin 
( 1 0 0z j= +  ) that does not enclose the pole at (1 0)j+ .  Thus, the radius of the disc 
must lie in the interval  0 1R≤ < .  Therefore, the ROC of equation (1.53) is given by 
the disc of largest radius, as shown in Figure (2.6) , corresponding to the condition 

 
1

1
z

<  

or, equivalently, 

 1z >  

FIGURE  2.7 Region of Convergence of   in the complex variable   


