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CHAPTER 2 An Introduction To 
Multidimensional Signals and 
Functions

2.1 INTRODUCTION

The concepts of domain, range and region of support (ROS) of a signal are 
extended in this chapter to the multidimensional (MD) case.  Two-dimensional (2D) 
and three-dimensional (3D) signals are of special interest and are considered in some 
detail.  Examples are given of practical situations.  For example, the domain, range 
and ROS are considered for such common signals as photographic and television 
images.

2.2 THE DOMAINS OFMD SIGNALS

A MD signal     has a domain  dmn   that consists of a (possibly infinite) 
set of  N-tuples.  For example,  dmn  might belong to  or, alternatively, to  

 .

It is sometimes convenient to express the independent variable  
  in the form of the column matrix

x t( ) x t( )[ ]
x t( )[ ] RN

NN

t t1( ) t2( ) t3( )… tN( )( )=
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(2.1)

   

We may also think of    as a vector having components   .  Using the 
superscript     to indicate the operation of matrix transposition, the above equation 
may be written as the row matrix   . The N-tuple and vec-
tor representations of the independent variable are shown in Figure (2.1)  for the 3D 
case. (Note that, if the    are complex, then the -tuple representation lies in   , 
which is the MD complex space).  For both the -tuple representation and the vector 
representation of   , the signal     is a function of    independent variables  

 .

 The variables   are referred to as the dimensions of the signal; they are also the 
elements in the column matrix representation and the vector components in the vector 
representation of   .

      FIGURE  2.1 N-tuple and Vector Representations of the independent 3D 
variable t
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Continuous-, Discrete- and Mixed-Domain MD Signals

Assume   .  Then the domain   .  Consider now the MD 
case where the number of dimensions   N>1 .  If    is defined over a continuum of  
N-tuple numbers  in   , then    is a continuous-domain MD signal.

If    is only defined on discrete N-tuples  , 
then      is a discrete-domain MD signal.

 Interestingly, it is possible for a MD signal to be defined over a continuum of num-
bers over some of its dimensions and only on discrete tuples over the remainder of its 
dimensions.  We refer to such a signal as a MD mixed-domain signal.  For example, 
the signal might be defined on the continuum of reals  over the first  K  dimensions 
and only on the entire integers    over the remaining  N-K  dimensions.  Then, we 
use the following notation for the mixed domain

(2.2)

2.3 2D and 3D Image Signals

In this section, we introduce some typical 2D and 3D image signals ; that is, signals 
that correspond to images that may be viewed by the human vision system (HVS).  
Their domains and mathematical representations are discussed, as well as some of 
their properties.  We consider, as examples, a rectangular photograph, a raster-scanned 
version of that photograph and digitzed images, including digitized temporal image 
sequences such as digital television images.

2.3.1 2D Continuous-Domain Images  

Many images are perceived by the HVS to be continuous-domain images.  For 
example, viewed by the HVS from a sufficient distance from its surface and from a 
direction that is normal to the surface, a typical gray-tone photograph  

  has a 2D rectangular domain

(2.3)

where the value of    is defined here as a  real number that is directly pro-
portional to the gray-level intensity of the photographic image at the 2-tuple point  

 .  

A typical gray-level photograph, including its black border,  may be represented as 
a 2D continuous-domain signal, as illustrated in Figure (2.2) , having zero value where 

t RN∈ dmn x t( )[ ] RN∈
x t( )

RN x t( )

x t( ) tk t1k t2k t3k … tNk, , , ,( ) k ZN∈,=
x t( )

R1

Z1

dmn x t( )[ ] RKxZN K–∈

x t( ) x t1 t2,( )=

x t( ) x t1 t2,( )=

Rrec
2 a b;( ) c d;( )[ ] R2∈=

x t1 t2,( )

t1 t2,( )
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the intensity is black and unity value where the intensity is white. In this example, the 
rectangular domain   includes the black border where the signal is defined to be 
zero.  Therefore, by definition, the region of support (ROS) of the signal is the smaller 
interior rectangle  that does not include this zero-valued border.  2D photo-
graphic signals, and virtually all practical 2D spatial images, are clearly of finite-
extent; that is, their domains are closed subsets of  having boundary points that 
are finite distances from all points in . 

Alternate representations of the 2D continuous-domain photograph are the 2D sur-
face representation and the contour reprentation shown in Figure (2.2).

If the value of a signal is assigned  in proportion to some physically-measurable 
quantity (such as the gray-level intensity of light, as in this particular example), then 
the signal is said to be an analog signal.  Therefore, a photograph  is an analog contin-
uous-domain 2D signal   .

On The Physical Interpretation of the Continuous-Domain Assumption

 From a physical point of view, the continuous-domain spatial property is an 
assumption that can only be made in the above example because the HVS perceives 
the intensity to be defined on a continuum of values in   .  We recognize that, in 
reality, this perception breaks down if  we view the image at a sufficiently fine scale 
(under a microscope, for example).  Then, we might observe that a gray tone is evi-
dently made up of a collection of non-touching black circular dots on a white back-
ground in such a way that the level of the gray-tone is represented by the average 
density of the black dots, as illustrated in Figure (2.3).  The HVS performs the 2D spa-
tial averaging that allows these collection of circular dots to be perceived, from a suffi-
cient distance, as a continuous-domain image.

  There are many other examples where natural biological systems, as well as artifi-
cial cognitive systems, are unaware of fine spatial details, thereby providing the illu-
sion, or perception, that the domain is continuous.  The typical cathode ray tube (CRT) 
device, as used in television, is an example.

Rre c
2

RROS
2

Rrec
2

R2

x t1 t2,( )

Rrec
2
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FIGURE  2.2 Representations of a Photograph  x t1 t2,( )



File name: chap2a.frame 2D and 3D Image Signals February 10, 1994 3:17 

32 Copyright L.T. Bruton  MD SIGNAL PROCESSING

FIGURE  2.3 Microscopic View of a Gray Tone in a Photgraphic Image

Doesn’t fit (working on it).



File name: chap2a.frame 2D and 3D Image Signals February 10, 1994 3:17 

33 Copyright L.T. Bruton MD SIGNAL PROCESSING

(see Fig. 2.2)

A 2D Mixed Domain Image:  A Scanned Photograph

Transducers are used to convert photographic images to electronic form.  For 
example, a common technique is to employ a scanning device to scan the photograph 
along closely-spaced horizontal rows, producing the so-called raster-scanned image as 
shown in Figure (2.4).  Television cameras work in this way.  The corresponding 
scanned image may be represented as a  2D mixed-domain spatial signal    , 
where

 ,  (2.4)

and

 ,   ,  (2.5)

The length of each row is   , the number of rows is   , and the distance 
between each row is   .  Clearly, this signal is continuous-domain in the row dimen-
sion    and discrete-domain in the column dimension   .  It is therefore a mixed-
domain signal and  .

x t1 n2T,( )

t1 0 Trow;[ ]∈ Trow R1∈

n2 0 N2 1–( );[ ]∈ N2 N1∈ T R1∈

Trow N2
T

t1 n2
dmn x t1 n2T,( )[ ] R1xN1∈
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FIGURE  2.4 A Raster Scan Mixed-Domain 2D Signal    Representing 
A Scanned Photograph

A 2D Analog Discrete-Domain Signal:  The Rectangularly-Sampled 
Photograph

The above raster-scan image may be converted to a rectangularly-sampled version 
of the photograph by sampling each raster-scanned row at uniform spatial intervals, 
spaced distance  T  apart, resulting in the 2D analog discrete-domain signal representa-
tion   .  If we have    samples per row and    rows, then  

, 

We shall often normalize the distance  T  to unity and write the uniformly-sampled 
distance-normalized 2D discrete-domain signal as   , in which case  

   where      is a rectan-
gular array of integer 2-tuples.

The complete sequence    is often represented as a matrix in which the 
element in row    and column    has value   .  Thus, the sequence is rep-
resented as the matrix

x t1 n2T,( )

x(t1,n2T)

t1

n2T

T

x n1T n2T,( ) N1 N2

dmn x n1T n2T,( )[ ] n1T( ) n2T( )( )= n1 0 N1;[ ]= n2 0 N2;[ ]=

x n1 n2,( )
dmn x n1 n2,( )[ ] Nrec

2∈ Nrec
2 0( ) 0( )( ) N1( ) N2( )( );[ ]≡

x n1 n2,( ){ }
n1 n2 x n1 n2,( )
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(2.6)

The values of the elements of this matrix belong to some interval in . In this rep-
resentation, the photograph is now nothing but a set of real numbers.  One might ask 
how we can reverse the process and view a photograph that is represented by the num-
bers in equatioon (2.6).

Viewing the 2D Discrete-Domain Analog Signal using Pixels

The matrix in equation (2.6) can easily be converted to a photograph, having 
domain .  Each element  of the matrix may be converted to a small uni-
form-intensity square tile having its centre at  in .  The light inten-
sity of the gray-tone is proportional to the value o f .

The ROS of the resulting photograph is the whole of  if the edges of each tile 
are of length  so that the tiles are just-touching tiles, as shown in Figure  (2.5).

We may represent each matrix element  as the  real-domain 2D impulse 
function of strength  given by

 (2.7)

The resulting elemental tile, referred to as a pixel  may be described math-
ematically in terms of the product of two strips of width  as follows: 

(2.8)

                                  

The operation of converting the 2D real-domain impulse in equation (2.7) to the 
square real-domain pixel of equation (2.8) is the so-called 2D sample-hold operation 
and is illustrated in Figure (2.5).  The resulting photograph is shown in Figure (2.6).

It is sometimes convenient to display such a photograph as a 2D surface-histogram, 
as shown in Figure (2.6), where each bin represents a sample in the 2D sequence hav-
ing height equal to the value of the sample. 

x 0 0,( ) x 0 1,( ) … x 0 N2 1–( ),( )

x 1 0,( ) x 1 1,( ) … x 1 N2 1–( ),( )

x 2 0,( )
…

x N1 1–( ) 0,( )

x 2 1,( )
…

x 0 1,( )

… x 2 N2 1–( ),( )

…
…

…
x N1 1–( ) N2 1–( ),( )

R1

Rre c
2 x n1 n2,( )

n1T( ) n2T( )( ) R2

x n1 n2,( )

Rrec
2

T

x n1 n2,( )
x n1 n2,( )

x n1 n2,( )δ n1T n2T,( ) Rrec
2∈

p t1 t2,( )
T

p t1 t2,( ) x t1 t2,( )[ ] u t1 0.5–( )T t2,( ) u t1 0.5+( )T t2,( )–[ ]=

u t1 t2 0.5–( )T,( ) u t1 t2 0.5+( ),( )–[ ]

intensity x n1 n2,( )∝
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FIGURE  2.5 The 2D Sample-Hold Operation That Converts A 2D Impulse To A 
2D Pixel

δ(t1,t2), volume = x(n1,n2)

t1

t2

T T

height = x(n1,n2)

12D
sample-hold

eqn. (2.8)

t2

t1

t1

t2

T T

intensity x n1 n2,( )∝
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FIGURE  2.6 Two Representations of a Matrix of Numbers as a Photograph in 

  

Spatial Perception

Spatial perception of natural scenes by the HVS is a very complex subject.  In gen-
eral terms,  the HVS system evidently processes the details in a scene by recognizing 
the general shape of the principal objects in the scene, according to their general out-
lines and according to such attributes as  their shading, texture, color and so on.  This 
classification-approach requires that the boundaries of objects and their interior 
attributes be processed as a matter of temporal priority.  Many computer vision sys-
tems emulate this approach.  The realistic spatial perception of objects and  the proper 
visual tracking of moving objects require that the objects be large enough, in terms of 
the number of samples used to represent them, that they form recognizable shapes with 
recognizable shading and texture.  This rather obvious statement explains why our 
vision system is not so foolish as to attempt to process a scene by emulating the raster 
scan approach that is used in video cameras.

The recognition that we  require large numbers of samples to represent outlines, 
texture and shading has significant practical implications.  For example, on a typical 
television screen we might expect that many quite small recognizable objects will be 
composed of hundreds of samples.  Thus, a square object consisting of  100  samples 
occupies  less than    in a square screen of size   .having  

  samples.  Objects consisting of  less than 25 samples will generally 

Rrec
2

t1

t2
t2

t1

 x(t1,t2)

R2
intensity x n1 n2,( )∝

1cm2 50( )x 50( ) cm2

1000( )x 1000( )



File name: chap2a.frame 2D and 3D Image Signals February 10, 1994 3:17 

38 Copyright L.T. Bruton  MD SIGNAL PROCESSING

be difficult to recognize and will have little or no outline details and outlines will not 
be smooth, in general.   For the interior texture or shading of an object to be recog-
nized, many hundreds of samples are required.

The above discussion implies that objects are generally supported by at least hun-
dreds of samples although their textures may be represented by important detail at spa-
tial distances down to a few samples.  Shading requires hundreds of samples for 
realistic representation.

It is often a good approximation to assume that television images are composed of a 
collection of objects having mostly smooth outlines and interiors  that have such 
attributes as shading, texture, brightness, etc.

Properties in Single-Frame Spatial Square Sub-blocks

If one divides a typical television frame into spatial square sub-blocks of a suffi-
ciently small size, typically  32x32 samples, then most of these square sub-blocks  
cover two principal types of  sub-images.  They will cover only the interior of objects 
or they will cover short approximately-linear segments of the edges of objects, as 
shown in Figure (2.10).  This suggests that two types of sub-images, or component  
images, are especially important.  First, slowly varying intensities that represent 
shaded interiors of objects and, second, objects that represent segments of the edges of 
objects.
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FIGURE  2.7 Spatial Sub-Blocks of a Typical Television Image

The Quantization and Coding of Image Values for Representation by a 
Machine 

The above 2D discrete-domain analog version    of a photograph cannot 
generally be represented in a machine, such as a computer, because    may 
have any one of an infinite number of values on say the real interval   , represent-
ing the gray-scale from black to white.  A machine, such as a computer, can only store  
a finite number of values, thereby forcing us to quantize the value   to some 
approximate value   .  We represent the operation of quantization by means 
of the operator  Q[.] so that

(2.9)

For example, the so-called negative-truncation operator  Q[.]  is shown in Figure 
(2.8) .  In this case, the operator  Q[.]  quantizes the value of the signal to the nearest 
entire integer that is less than or equal to the value    , which is often written 
as

(2.10)

interior
fill

edge

t1

t2
32

32

typical 32x32 sub-block
of static TV image

R2

x n1 n2,( )
x n1 n2,( )
0 1;[ ]

x n1 n2,( )
xQ n1 n2,( )

xQ n1 n2,( ) Q x n1 n2,( )[ ]=

x n1 n2,( )

xQ n1 n2,( ) x n2 n2,( )=
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FIGURE  2.8 Negative-Truncation Operator  Q[.](2.8)

Some appropriate code must be used in the machine to represent each quantized 
value .  The quantized values, which are integers in this example, are gen-
erally coded according to a suitable number representation.  Most commonly, the 
fixed-point binary number code or the floating point binary number code are 
employed.  The binary number system is reviewed in Appendix ??.  Binary methods 
convert the quantized signal values    to binary words, which are strings 
of 1-digits and 0-digits.

The fixed-point representation of non-negative numbers    is given by 
the values of the binary digits    that satisfy the equation

(2.11)

where  W  is the wordlength of the binary representation (or word) and the subscript  
2  on the left side implies the binary representation.

For example, if       and    bits , then    
and, according  to equation  (2.11) ,

  (2.12)

x

xQ

1 2 3

1
2
3

xQ n1 n2,( )

x n2 n2,( )

x n2 n2,( )
bi 0 1;[ ]= Z1∈

x n2 n2,( )( )2 bj 2j( )
j 0=

W 1–

∑=

x n1 n2,( ) 14.91= W 8= x n2 n2,( ) 14=

x n2 n2,( )( )2 b7b6b5b4b3b2b1b0{ } 00001110{ }= =
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The digitized binary version of the image is therefore a matrix of  8 bit binary 
words, where each element in the matrix (2.6)  is replaced with the binary word corre-
sponding to the value of the element.

An image having numbers of row and column samples given by    
requires a total of     bits for its binary representation using  W-bit words.  In 
this example,  this corresponds to    bits.  Clearly, this  
is a significant memory storage requirement, especially if we want to store large num-
bers of digitized images.  For this reason, methods of compressing such memory stor-
age requirements are very important and will be considered later in this book.

   A Digitized Television Image

A digitized television image is simply a temporal sequence of the above 2D dig-
itzed  images and may be written as the quantized 3D signal  

(2.13)

where

  and  (2.14)

The domain of a digitized television signal is of finite extent in the two spatial 
domain variables.  However, in the temporal dimension   , it  is  (for all practical 
purposes) of infinite extent.   The individual spatial images  are referred to as frames 
and so the temporal index    points to the   th frame in the virtually-infinite 
sequence of frames.  We may write  

(2.15)

This discrete-domain is contained in a 3D solid rectangular extrusion of infinite 
length in the temporal direction, as shown in Figure  (2.9) .

N1 N2 1024= =
N1N2W

1024( ) 1024( ) 8( ) 8388608=

x n( ) x n1 n2 n3, ,( )=

n1 n2,( ) Nrec∈ n3 N1∈

n3

n3 n3

dmn x t( )[ ] NrecxN1=
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FIGURE  2.9 The 3D Domain of a Digitized Television Signal  

The range of    depends on the wordlength.  For example, in the above example 
where the wordlength    bits,,  the values of    lie on the closed integer 
interval  [0 255]  and so  .  In a practical situation,  we 
might need to consider how to code a quantized signal that might lie outside this range.

We may sketch a digitized television image as shown in Figure (2.10) .  The dis-
crete nature of the temporal dimension is emphasized in this sketch, where individual 
frames are evident and drawn separately.  The spatial samples  are rectangularly-tiled 
because this is approximately the way we see them at close range.  

Smooth Temporal Motion

It is very important to recognize that the HVS (and the design of the television sys-
tem) require that the television image is, for the most part, changing sufficiently 
slowly with time that most parts of most consecutive frames,    and  

 ,  differ only slightly from each other so that the sequence of images 
retains the perception of natural-looking smooth motion. This is another example 
where perception is different than reality in the sense that the temporal domain is per-
ceived to be continuous, partly because the temporal averaging of the HVS often cre-
ates the illusion of smooth motion if the frame rate exceeds about 60 frames per 

x t( )

∞

3-tuple (0,0,0)

N2
rec × N1

x t( )
W 8= x t( )

rng x t( )[ ] 0 255;[ ]=( ) N1∈

x t1 t2 t3, ,( )
x t1 t2 t3 1–, ,( )
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second.  The opticas of both the typical television camera and the typical CRT screen  
introduce further temporal smoothing.

FIGURE  2.10 Representation of a Digitized Television Image  

2.4 CONTINUOUS-DOMAIN 3D IMAGE OBJECTS

Many images are composed of complicated collections of objects, having charac-
teristic outlines and characteristic interiors.  In order to provide a  framework for the 
mathematical representation of 3D images, it is useful to consider some elementary 
image objects  having idealized properties.  These objects may be employed as the 
components from which more realistic and complicated images are constructed.

For example, we have noted that single-frame sub-images might cover part of the 
interior of an object and exhibit a smoothly-varying spatial variation of intensity, cor-
responding to a shadowed region.  Alternatively, a single-frame sub-image might 
cover an almost-linear segment of the curved edge of an object, in which case we 
might expect the intensity to change abruptly in directions normal to that edge.  In both 
cases, these sub-images might be changing their spatial locations from frame to frame, 
as they move with time, as indicated in  Figure (2.11).

x n1 n2 n3, ,( )

t1

t2

t3

3-tuple (0,0,0)

t3

∞
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FIGURE  2.11 Sub-Image Coverage of A Smooth Interior and of an Edge 
Segment

  These observations motivate the following introduction of idealized mathematical 
models for simple 3D objects.  We shall emphasize the 3D case, although the 2D case 
is easily considered by dropping the third dimesnion    and the 4D case by obvious 
extension to the fourth dimension   .

We shall consider here the continuous-domain and often pretend that the objects 
have support throughout the entire 3D region   .  In practise, it must be recognized 
that actual signals will have a more restricted domain, such as  (2.15) above.  Further, 
the signals  will be sampled.  The effects of  finite extent and of sampling are impor-
tant and must later be taken into account.  For now, we ignore these effects.

2.4.1 A 3D Gate Pulse Signal of Infinite Extent in  .

Consider the signal

shaded
interior

edge

t1

t2

R2

temporal
movement

white
exterior

n3
n4

R3

R3
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(2.16)

where the region of support      is defined as

(2.17)

 Recall that the equation  

(2.18)

describes a plane in    having normals    that are given by the vectors

(2.19)

and having a perpendicular distance    from the origin, as shown in Figure (2.12). 
Therefore, the region   , as defined in equation (2.17), is 
that contained between the two 2D planes    and  

 . This is a region of support    having the shape of a  3D 
slice of uniform thickness , within which the defined signal    has the value 
1 , as shown in Figure  (2.12).

 The signal is a 3D pulse of duration    in the direction defined by   . It 
represents the type of signal that is ideally reflected from an infinitely distant target 
and detected, as a function of time   , by a 2D spatially-rectangular array over the 
variables    and    in such applications as the detection of reflected radar or sonar 
signals . The pulse is observed, as a function of time   , to move across the 2D spatial 
image in variables    and   . We shall return to the subjects of dynamic 2D spatial 
images.  This signal might also represent a line-edge of thickness    that is mov-
ing with constant temporal velocity across the spatial plane.

This signal is clearly discontinuous-valued and therefore non-analytic.

x t( )
1 t∀ Rpulse

3∈( ),

0 otherwise,
≡
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3
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d1t1 d2t2 d3t3+ + l1=
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FIGURE  2.12 The 3D Plane and the Continuous-Domain 3D Gate Pulse Signal 
of Infinite Extent

2.4.2 Exponential and Sinusoidal 3D Signals

If the reader is not completely familiar with the 1D exponential series    and 
its relationships with the sine and cosine series    and   , it is recom-
mended that Appendix A be reviewed.

In order to describe the 3D exponential series, we shall require the 3D complex fre-
quency vector

(2.20)

where    ,   .  We refer to

(2.21)

 as the 3D (real) frequency vector.  Given

l2
l1

∞

∞

normal, d

t2

t3

t1

Region of R3
pulse

in positive octant
where | x(t) | = 1

positive octant
only shown

exp x[ ]
x( )sin x( )cos

s s1 s2 s3, ,[ ]T= C3∈

si σi jωi+= i 1 2 3, ,=

ω ω1 ω2 ω3, ,[ ]T= R3∈
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  , (2.22)

the inner product of the two vectors    and    is defined as

(2.23)

The 3D Complex Exponential Signal

The 3D complex-valued s-domain exponential series is defined as

 , (2.24)

With , we shall often be interested in this signal over the region where  
 ,  , corresponding to the so-called 3D  phasor exponential signal

(2.25)

The 3D Sinusoidal and Cosinusoidal Signals

Taking the real and imaginary parts of equation (2.25) gives

(2.26)

and

(2.27)

The domain of these two sinusoidal 3D signals, in terms of the independent vari-
able  , is  .  Such signals are important component signals of  3D images.  They 
appear in the next chapter, where they form the basis of the frequency domain descrip-
tion of 3D signals. 

   The 3D Sinusoidal Signal in 

Consider the 3D signal

t t1 t2 t3, ,[ ]T≡ R3∈

s t

s t⋅ sTt≡ s1t1 s2t2 s3t3+ += C1∈

x t( ) exp sTt[ ]≡ esTt= C1∈ t R3 s C3∈,∈

si σ i jω i+≡
σ i 0= i 1 2 3, ,=

x t( ) exp jωTt[ ] ejωTt= = C1∈

Re exp jωTt[ ][ ] ωTt( )cos ω1t1 ω2t2 ω3t3+ +( )cos= = R1∈

Im exp jωTt[ ][ ] ωTt( )sin ω1t1 ω2t2 ω3t3+ +( )sin= = R1∈

t R3

RrecxR1
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(2.28)

as shown in Figure 2.13, where we interpret    and    as spatial variables and    
as the temporal variable.

This signal has a number of properties that are noteworthy.  If viewed as a time-
varying spatial image, the signal moves with constant temporal velocity across the 
spatial viewing area  .  Throughout the 3D region , its intensity is con-
stant in the direction   and varies sinusoidally in the direction   , and these two vec-
tors are orthogonal.  Signals that have these properties will be studied in further depth.

FIGURE  2.13 The 3D Sinusoidal Signal in 

In order to establish the mathematical framework for the discussion of various 
types of MD signals, we begin with a brief review of the MD geometry of lines and 
planes.

x t( ) ωTt( )sin≡ ω1t1 ω2t2 ω3t3+ +( )sin t RrecxR1∈,=

t1 t2 t3

Rrec RrecxR1

d p

RrecxR1

−∞

+∞
t3

t1

t2

R3
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An MD signal that is duration-bounded in at least one dimension and duration-
unbounded in at least one dimension is defined as partially duration-bounded. Such a 
signal could have a ROS that is of infinite extent in some of the dimensions and of 
finite extent in the remaining dimensions.

The analysis and design of signal processing systems is simplified by considering 
special classes of generic signals. These signals are widely used for such purposes as 
the generation of suitable test signals. Some of them occur as component signals in the 
output response signals of signal processing systems. The more important of these sig-
nals are now considered.

2.4.3 Step Functions

The MD continuous domain fully causal unit step function is defined as

(2.29)

(2.30)

where

(2.31)

That is, the region    is the region of MD Euclidean space where the    are  
all non negative. This region is defined as the fully-causal region. The continuous 
domain 2D unit step function    is shown in Figure 2.10 . Such functions are use-
ful for determining the transient behaviour of a system to the introduction of a step dis-
continuity and also as a multiplicative function for bounding the duration of a signal 
function   ; for example,    duration bounds    to 
some MD-rectangular region of support defined by the origin    
and the far corner   .

uN t( )
1 t Rcausa l

M∈,

0 otherwise,
≡

Rcausal
M tk

k 1=

N
∩ 0≥≡

Rcausa l
N tk

u2 t( )

x t( ) x t( ) uM t( ) uM t0( )–[ ] x t( )
t 0 0 0 … 0, , , ,( )=

t0 t01 t02 t03 … t0N, , , ,( )=
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FIGURE  2.14 The Continuous-domain 2D unit step function

2.4.4 Impulse and Knife Edge Functions

The MD continuous domain unit impulse function    is defined by the fol-
lowing three constraints:

(2.32)

and

(2.33)

where the integral implies MD integration over the entire region   .  This func-
tion is shown in Figure 2.10 for the 2D case. Many other types of impulse functions 
may be defined for the MD case. For example, the 2D horizontal and vertical impulse 
slices, or 2D knife edge functions, shown in Figure 2.10 have infinite magnitudes 
along one of the axes.

t1

t2

t31

0

∞

∞

u2(t)

δN t( )

δN t( ) 0 t t 0≠( )∀,=

δN t( )dt
∞–

∞

∫ 1=

RN
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Discrete domain versions of the impulse and knife edge functions may be defined. 
We shall be particularly interested in the distance normalized discrete domain MD unit 
impulse function    which is defined as follows

(2.34)

and is shown in Figure 2.10 for the 2D case.

2.5 MD Lines and Planes

The MD Line

We define the MD line (or hyperline) as the region  where

(2.35)

The direction of this MD line in  is given by the direction vector

(2.36)

and the MD line passes through the N-tuple

(2.37)

The unit vectors  (that is, vectors of unit length) that point in the same direction as 
the line are given by

(2.38)

δN n( )

δN n( )
0 n n 0≠∀,

1 n, 0=
≡

Rline
N RN⊂
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N t≡
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t2 γ2–
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---------------

t3 γ3–
β3

--------------- …
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…
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=
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------------ …
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βd 2
------------ …

βN

βN 2
-------------

T
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The operator    on the vector    is referred to as the Euclidean Norm (or 
Euclidean length) of the vector and is therefore defined by the Pythagorean expression

(2.39)

   The 3D Straight Line

For  , the straight line    in 3D Euclidean space is given by

(2.40)

This line passes through the 3-tuple   .

The radian angles between the line   and the three axes are easily shown by 
simple geometry to be given by

(2.41)

where   and   is the Euclidean Norm of the vector  
 .  The angles    are defined as the direction cosines of the line 

because their cosines, according to the above equation, are equal to the three direc-
tional components of   .

Consider a numerical example with , 
, , as shown in Figure 2.15. We have  , 

the line passes through the 3-tuple (-1 2 3) and the unit vector  in the direction of the 
line is . The direction cosines are given by the  3-tuple of angles 
1 

1.  

β 2 β

β β1
2 β2

2 β3
2 … βd
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2= = = = = ==
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FIGURE  2.15 A 3D straight line with 

The MD Plane

The concept of a MD plane, sometimes referred to as a hyperplane for  , is a 
direct extension of the usual formulation of a 3D plane. We define the MD plane, or 
hyperplane,  as the region

(2.42)

 where l and , , are constants.

The MD normal to the above hyperplane is defined as the MD vector

(2.43)
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The 3D Plane

The 3D plane is the region where

(2.44)

It may be shown that the perpendicular distance between the plane and the origin is 
equal to l. The two 3D normals to the plane are given by 

(2.45)

Consider a numerical example with  as shown in 
Figure 2.16. The plane  is perpendicular distance   from the origin and the 
two unit normals to the plane are given by .

FIGURE  2.16 A 3D plane with 
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2.6 MD COORDINATE TRANSFORMATION

Let the independent MD N-element vector variable t be pre-multiplied by a real 
 matrix A to give the new N-element column vector u according to 

. (2.46)

The vector t is subjected here to a linear transformation according to the transfor-
mation matrix A . It is transformed into the vector u . Clearly, the N row elements of u 
are linear combinations of the N row elements of t . Such linear transformations are 
fundamentally important in signal processing.

2.6.1 Rotational Transformation about One Axis

Consider the 2D coordinate vector  and a new rotated coordinate vector 
 , shown in Figure 2.17 , where the latter is obtained from the former by 

a clockwise rotation of  radians. Then it is easily shown that 

(2.47)

where

(2.48)

and is referred to as the rotation matrix for a 1D system. This rotation has the effect 
of rotating a 2D coordinate system about the first axis  by  radians.

Similarly, in the case of a MD coordinate system, a coordinate rotation  about 
the  axis by  is achieved by means of the transformation matrix

N N×

u At=

t t1 t2
T

=
u u1 u2

T
=

θ1

u R1t=

R1
θ1cos θ1sin–

θ1sin θ1cos
=

t1 θ1

Rd
dth θd
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(2.49)

2.6.2 MD Rotational Transformations about Multiple Axes

Let us apply   successive transformations , then , then , ... then 
 to sequentially rotate the coordinate system about  of the axes, one at a 

time; first about the axis  , then about the axis  and so on until the rotation has been 
performed about  of the axes. This general rotation of the MD coordinate system 
is therefore given by the  rotational matrix  where

(2.50)

and

(2.51)

The single axis  rotational transformation matrix  has the property that it 
is skew symmetric and its determinant . It follows that

(2.52)

 Example 9

Rotations about the first and second axes  and   correspond to

Rd

1 0 0 0 . . . . . . 0 0
0 1 0 0 . . . . . . . 0
0 0 1 0 0 . . . . . . .
0 0 0 1 0 0 . . . . . .
. . 0 0 1 0 0 0 . . . .
. . . 0 0 θdcos θdsin– 0 . . . .

. . . . 0 θdsin θdcos 0 0 . . .

. . . . 0 0. 0 1 0 . . .

. . . . . . 0 0 1 0 . .

. . . . . . . 0 0 1 0 0
0 . . . . . . . 0 0 1 0
0 0 . . . . . . 0 0 1

=

N 1– R1 R2 R3
RN 1– N 1–

t1 t2
N 1–

N N× R

RN 1– RN 2– …R2R1

U RN 1– RN 2– …R2R1t Rt= =

N N× Rd
det Rd[ ] 1=

det R[ ] d
d 1=

d N 1–=

∏ et Rd[ ] 1==

t1 t2
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 and (2.53)

and therefore the general 3D rotation can be written as

(2.54)

corresponding to the 3D rotational geometry shown in Figure 2.18.

2.6.3  Orthogonal Transformations

This section provides a review of some properties of vectors and matrices that are 
especially relevant to MD coordinate transformations and also to later considerations 
regarding the orthogonality of signals. The material is not essential for an understand-
ing of this chapter and therefore the reader may choose to omit this section at this time.

The vector components  in equation ( ) are usually thought of, at least in the 3D 
case, as forming mutually perpendicular axes. Vector components that are mutually 
perpendicular are said to be orthogonal. So far, we have perhaps intuitively under-
stood that any N-tuple location in  can be found by specifying all N components . 
We now formalize and generalize some of these concepts.

Real Orthogonal Vectors

Consider the real vectors , and the real numbers 
. Now, if

(2.55)

unless , then the vectors 
 are linearly independent.

If every MD vector w in  can be expressed in terms of some linear combination

R1

θ1cos θ1sin– 0

θ1sin θ1cos 0

0 0 1

= R2

1 0 0
0 θ2cos θ2sin–

0 θ2sin θ2cos

=

R R1R2

θ1cos θ1sin– 0

θ2 θ1sincos θ2 θ1coscos θ2sin–

θ2 θ1sinsin θ2 θ1cossin θ2cos

==

td

RN td

v1 v2 … vj … vN, , , , ,
α1 α2 … αd … αN, , , , ,

α1v1 α2v2 α3v3 … α+ jvj … αNvN 0≠+ + + + +

α1 α2 α3 … αd … αN 0= = = = = = =
α1 α2 … αd … αN, , , , ,

RN
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(2.56)

by making a suitable choice for the N real weights , then the set of vectors 
 is said to span the space .

If the vectors  are linearly independent and if they span the 
space  , then they are said to form a basis for the space . It is easily shown that 
the weights  that satisfy equation (2.56) are unique; that is, no 
other combination of the vectors equal w. The number of basis vectors, in this case N, 
is defined as the dimension of the space of w .

The inner product of two vectors u and v is defined as  . The two vectors u 
and v are defined to be orthogonal if their inner product is zero; that is, if

(2.57)

We define a set of m vectors  to be a mutually orthogonal set 
if each of the vectors  is orthogonal with the other (N-1) vectors, . Therefore, 
N mutually orthogonal vectors  have the property that

(2.58)

(2.59)

We may think of each one of these vectors as pointing in the direction of one of the 
m mutually perpendicular coordinate axes in . The above mutually orthogonal vec-
tors may each be scaled to vectors of unit length (that is, unit vectors) by dividing 
through by , in which case they are defined as an orthonormal set and satisfy 
the orthonormal equations

(2.60)

(2.61)

A basis of vectors  that satisfies the above equations is an 
orthonormal basis. The most important orthonormal basis is the so-called standard 
basis, or unit basis, which is given by the following N vectors

w α1v1 α2v2 α3v3 … α+ jvj … αNvN+ + + + +=

αj
v1 v2 … vj … vN, , , , , RN

v1 v2 … vj … vN, , , , ,
RN RN

α1 α2 … αd … αN, , , , ,

uTv

uTv 0=

v1 v2 … vj … vN, , , , ,
vj vi i j≠,

v1 v2 … vj … vN, , , , ,

vi
Tvj 0 i, j≠=

vi
Tvj vi 2 i j≠,=

RN

vi 2

vi
Tvj 0 i, j≠=

vi
Tvj 1 i, j= =

v1 v2 … vj … vN, , , , ,
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(2.62)

each of unit length and each pointing in the direction of one coordinate axis.

Orthogonal Matrices: Let Q be the real  matrix

(2.63)

where the columns   therefore have dimension  . We define an orthogonal 
matrix Q as a real square matrix having columns that are orthonormal. It is easily 
shown, using the orthonormal property of the columns in equation ( ), that

(2.64)

where I is the  identity matrix. Also, since

(2.65)

it follows that

(2.66)

and

(2.67)

Equation ( ) describes an important property of orthogonal matrices; that is, the 
transpose of an orthogonal matrix is equal to its inverse.

Determinant of an orthogonal matrix: It is easily shown that, for any two matrices 
A and B,

(2.68)

e1
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..

0
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0
0

… e, N
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0
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=,=,=

N N×

Q v1 v2…vj…vN[ ]=

vj N 1×

QTQ QQT I= =

N N×

Q 1– Q I=

QT Q 1–=

QT Q=
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It then follows from equations ( ), ( ), ( ) and ( ) that, for any orthogonal matrix Q,

(2.69)

from which it follows directly that

(2.70)

Rotational Property of Orthogonal Matrices: We are now in a position to derive an 
especially useful property of orthogonal transformations. Consider that two vectors, 

 and , are both subjected to the same orthogonal transformation ; that is

 and (2.71)

We want to find out the effect of the orthogonal transformation  on the inner 
product; that is, to compare   with . Using the elementary property of trans-
poses that  , we write

(2.72)

and, using equation ( ), this simplifies to  .

We have shown that inner products of real vectors are invariant under orthogo-
nal transformation. A second result follows by choosing  (so that ) 
and the above equation simplifies to

(2.73)

which, using the property of matrices that , further simplifies to

(2.74)

Therefore the orthogonal transformation Q preserves vector lengths (that is, 
Euclidean norms). The length of a vector in the coordinate system t is the same as its 
length in the new coordinate system   for real square Q if and only if Q is 
orthogonal. This implies that, in 3D and 2D Euclidean spaces, the orthogonal transfor-
mation is a rotation of the vector about the origin.

This implies that the matrices  and  in Section ?.? are real orthogonal matri-
ces. The reader may verify this by checking that the inner products of their column 
vectors satisfy equation ( ).

det Q 1–( )det Q( ) det QT( )det Q( ) 1= =

det Q( ) 1±=

x1 x2 Q

y1 Qx1= y2 Qx2=

Q
x1

Tx2 y1
Ty2

ab( )T bTaT=

y2 Qx1( )T Qx2( ) x1
TQT( ) Qx2( ) x1

T QTQ( )= = =

y1
Ty1 x1

Tx1=

x1 x2= y1 y2=

y1
Ty1 x1

Tx1=

aTa a 2=

y1 2 x1 2=

u Qt=

Ri Rd



File name: chap2a.frame MD COORDINATE TRANSFORMATION February 10, 1994 3:17 

61 Copyright L.T. Bruton MD SIGNAL PROCESSING

Unitary Complex Vectors and Unitary Complex Matrices: The above analysis 
changes only slightly when the vectors are allowed to be complex. For example, in the 
above definition of linear independence, the weights  and the vectors are allowed to 
be complex. The inner product of two complex vectors x and y is defined as 

 , where the superscript asterisk indicates complex conjugation. We will 
denote the operations of conjugation followed by transposition with a superscript dag-
ger  so that we may write

(2.75)

Two complex vectors are defined to be orthogonal if their inner product is zero; that 
is, if

(2.76)

The length of a complex vector x is defined as the inner product of x with itself

(2.77)

Orthonormal, or unitary, complex vectors are defined in the same way as for real 
vectors. That is, a system of complex vectors  is orthonormal , or  
unitary, if

(2.78)

(2.79)

If the columns of a square complex matrix Q are unitary, then the matrix is said to 
be a  unitary matrix.

It is easily shown that a unitary matrix has the important property that

(2.80)

It is now easy to show that the transformation of a complex  vector x by a 
complex unitary  matrix Q preserves lengths. Let

(2.81)

 From equation ( ), the squared length of the transformed complex vector y is given 
by

ad

x∗( )
T

y

†

x† x∗( )
T

≡

x( )†y 0=

x 2 x†x( )=

y1 y2 … yj … yN, , , , ,

xi
†xj 0 i j≠,=

xi
†xj 1 i, j= =

Q† Q 1–=

N 1×
N N×

y Qx=
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(2.82)

so that  is equal to  , proving that the length of a complex vector is pre-
served under a unitary transformation.

This completes the brief review of properties of matrices.

2.6.4 Linear Trajectory MD Signals

Linear Trajectory (LT) signals are an especially important class of MD signals. 
They occur in many kinds of signal processing systems, including television, radar, 
and seismic signal processing.

A MD signal  is a Linear Trajectory (LT) signal if there exists a constant 
MD vector  such that the directional derivative  is zero every-
where in the domain of the signal.

This definition implies that a LT signal  is constant along all MD lines having 
the same direction as the MD vector n . In the 3D case, for example, a LT signal is 
constant along all straight lines having a particular direction n. We shall therefore 
refer to the unit vector in the direction of n as the constant signal vector . The direc-
tion of n is the constant signal direction of the LT signal. The signal 

, that was considered in Example 16, is an example of a 
2D LT signal because it has constant value along all 2D lines having direction 

 corresponding to the constant signal vector

(2.83)
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