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CHAPTER 2 An Introduction To
Multidimensional Signals and
Functions

2.1 INTRODUCTION

The concepts of domain, range and region of support (ROS) of asignal are
extended in this chapter to the multidimensional (MD) case. Two-dimensional (2D)
and three-dimensional (3D) signals are of special interest and are considered in some
detail. Examples are given of practical situations. For example, the domain, range
and ROS are considered for such common signals as photographic and television
images.

2.2 THE DOMAINS OFMD SIGNALS

A MD signal x(t) hasadomain dmn[x(t)] that consist?\lof a(possibly infinite)
se}\I of N-tuples. For example, dmn [x(t)] might belongto R or, aternatively, to
N

It is sometimes convenient to express the independent variable
t = ((t)(t,)(t3)% (ty))  intheform of the column matrix
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= |b 2.1

We may also think of t asavector having components t;,t,, ¥4, t,, . Usingthe
superscript T to indicate the operation of matrix transposition, the above equation
may be written astherow matrix t = [t t,, ¥4, ty, ¥4, ty] . The N-tuple and vec-
tor representations of the independent variable are shown in Figure (2.1) for the 3D
case. (Note that, if the t; are complex, then the N-tuple representation liesin c :
which isthe MD complex space). For both the N-tuple representation and the vector
representation of t ,thesignal x(t) isafunctionof N independent variables
'[1, t2, Ya, td’ Ya, tN .

Thevariables t are referred to as the dimensions of the signal; they are also the
elementsin the column matrix representation and the vector components in the vector
representation of t .

FIGURE 2.1 N-tuple and Vector Representations of the independent 3D
variable t
ty
1 3-tuple
R3 (tptota)
J
® t3
V.
51
vector t = t,
t3
tp
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2.3

231

Continuous-, Discrete- and Mixed-Domain MD Signals

Assume t1 R" . Thenthedomain dmn[x(t)] T R" . Consider now the MD
case where the number ,\(l)f dimensions N>1. If x(t) isdefined over acontinuum of
N-tuple numbers in R , then x(t) isacontinuous-domain MD signal.

If x(t) isonly defined on discrete N-tuples t, = (tyy, toy, ta, ¥4, tye), K1 z"
then x(t) isadiscrete-domain MD signal.

Interestingly, it is possible for aMD signal to be defined over a continuum of num-
bers over some of its dimensions and only on discrete tuples over the remainder of its
dimensions. We refer to such asignal asaM D mixed- domaln signal. For example,
the signal might be defined on the continuum of reals R* over thefirst K dimensions
and only on the entire integers z' over the remai ning N-K dimensions. Then, we
use the following notation for the mixed domain

dmn[x(t)] T R¥xzN K 2.2)

2D and 3D Image Signals

In this section, we introduce sometypical 2D and 3D image signals; that is, signals
that correspond to images that may be viewed by the human vision system (HVS).
Their domains and mathematical representations are discussed, as well as some of
their properties. We consider, as examples, arectangular photograph, a raster-scanned
version of that photograph and digitzed images, including digitized temporal image
sequences such as digital television images.

2D Continuous-Domain Images  x(t) = Xx(t, t,)

Many images are perceived by the HV S to be continuous-domain images. For
example, viewed by the HV S from a sufficient distance from its surface and from a
direction that is normal to the surface, atypical gray-tone photograph

X(t) = x(t1,t,) hasa2D rectangular domain

R’ = [(a;b)(c:d)]T R® 2.3)

wherethevalue of x(t;,t,) isdefined hereasa rea number that isdirectly pro-
portional to the gray-level intensity of the photographic image at the 2-tuple point

(t, 1)) .

A typical gray-level photograph, including its black border, may be represented as
a2D continuous-domain signal, asillustrated in Figure (2.2) , having zero value where

29
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the intensity is black and unity value where the intensity is white. In this example, the
rectangular domain R, . includesthe black border where the signal is defined to be
zero. Therefore, by definition, the region of support (ROS) of the signal isthe smaller
interior rectangle R2 ros that does not include this zero-valued border. 2D photo-
graphic signals, and virtually all practical 2D spatial |mages are clearly of finite-
extent; that is, their domains are closed subsets of R . having boundary points that
are finite distances from all pointsin R

Alternate representations of the 2D continuous-domain photograph are the 2D sur-
face representation and the contour reprentation shown in Figure (2.2).

If the value of asignal isassigned in proportion to some physically-measurable
quantity (such asthe gray-level intensity of light, asin this particular example), then
the signal is said to be an analog signal. Therefore, a photograph is ananalog contin-
uous-domain 2D signa  x(t;, t,) .

On The Physical Interpretation of the Continuous-Domain Assumption

From a physical point of view, the continuous-domain spatia property isan
assumption that can only be made in the above example because the HV'S perceives
the intensity to be defined on a continuum of valuesin R, . . Werecognizethat, in
reality, this perception breaks down if we view the image at a sufficiently fine scale
(under a microscope, for example). Then, we might observe that agray tone is evi-
dently made up of a collection of non-touching black circular dots on a white back-
ground in such away that the level of the gray-tone is represented by the average
density of the black dots, asillustrated in Figure (2.3). The HV S performsthe 2D spa-
tial averaging that allows these collection of circular dotsto be perceived, from a suffi-
cient distance, as a continuous-domain image.

There are many other examples where natural biological systems, aswell as artifi-
cial cognitive systems, are unaware of fine spatial details, thereby providing the illu-
sion, or perception, that the domainis continuous. Thetypical cathode ray tube (CRT)
device, asused intelevision, is an example.
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FIGURE 2.2 Representations of a Photograph  x(t,, t,)
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Doesn't fit (working on it).

FIGURE 2.3 Microscopic View of a Gray Tone in a Photgraphic Image
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(seeFig. 2.2)

A 2D Mixed Domain Image: A Scanned Photograph

Transducers are used to convert photographic images to electronic form. For
example, acommon technique isto employ a scanning device to scan the photograph
along closely-spaced horizontal rows, producing the so-called raster-scanned image as
shown in Figure (2.4). Television cameraswork in thisway. The corresponding
scanned image may be represented asa 2D mixed-domain spatial signal  x(t;, n,T)
where

t, T[0T, 0w + Trow! R (2.4)

and

n, [0;(N,-1)] . N, T N*, T1 R

(2.5

The length of eachrow is T, , the number of rowsis N, , and the distance
between eachrow is T . Clearly, thissignal is continuous-domain in the row dimen-
son t; and discrete-domain in the column dlmenson n, . Itistherefore a mixed-
domainsignal and dmn[x(t;, n,T)] T R'xN!
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FIGURE 2.4

A Raster Scan Mixed-Domain 2D Signal x(t;,n,T) Representing
A Scanned Photograph

X(t1,n,T)

A

AVNNS

=
t

A 2D Analog Discrete-Domain Signal: The Rectangularly-Sampled
Photograph

The above raster-scan image may be converted to a rectangularly-sampled version
of the photograph by sampling each raster-scanned row at uniform spatial intervals,
spaced distance T apart, resulting in the 2D analog discrete-domain signal representa-
tion x(n,;T,n,T) . If wehave N, samplesper row and N, rows, then

dmnx(n, T, n,T)] = (N T)(n,T))| Ny = [ONy], ny = [ON,]

We shall often normalize the distance T to unity and write the uniformly-sampled
distance-normalized 22D discreteudomair% signa as x(ny, n,) , inwhich case
dmn[x(ny, n,)] 1 Nio. where N .° [((0)(0));((N;)(N,))] isarectan-
gular array of integer 2-tuples.

Thecompletesequence {x(ny, n,)} isoftenrepresented asamatrix in which the
elementinrow n; andcolumn n, hasvalue x(n;,n,) . Thus, the sequenceisrep-
resented as the matrix
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x(0,0)  x(0,1) Ya x(0, (N, —1))
x(1,0)  x(1,1) Ya X(1, (Np—1))
X(2,0)  x(2,1) Y x(2, (N,—1)) (2.6)

7 Vs Y Ya
X((N;=1),0) x(0,1) %4 x((Ny—1), (Np—1))

The values of the elements of this matrix belong to someinterval in R™. Inthis rep-
resentation, the photograph is now nothing but a set of real numbers. One might ask
how we can reverse the process and view a photograph that is represented by the num-
bers in equatioon (2.6).

Viewing the 2D Discrete-Domain Analog Signal using Pixels

The matrix in equation (2.6) can easily be converted to a photograph, having
domain R, .. Eachelement x(n,, n,) of the matrix may be converted to asmall uni-
form-intensity squaretile having itscentreat  ((n,T)(n,T)) in R?. The light inten-
sity of the gray-tone is proportional to thevalueof x(n;, n,) .

The ROS of the resulting photograph is the whole of Rr o If the edges of each tile
are of length T so that the tiles are just-touching tiles, as shown in Figure (2.5).

We may represent each matrix element x(n,, n,) asthe real-domain 2D impulse
function of strength x(ny, n,) given by

x(ny, n,)d(n, T, n,T) 1 Rrec (2.7)

Theresulting elemental tile, referred to asapixel p(ty, t,) may bedescribed math-
ematically in terms of the product of two strips of width T asfollows:

Pty t,) = [X(t, t,)][u((t, - 0.5)T, t,) - u((t, + 0.5)T, , NENSity ux(ng, ny)
[u(t,, (t,— 0.5)T) - u(t,, (t, + 0.5))]

The operation of converting the 2D real-domain impulse in equation (2.7) to the
sguare real-domain pixel of equation (2.8) isthe so-called 2D sample-hold operation
and isillustrated in Figure (2.5). The resulting photograph is shown in Figure (2.6).

It is sometimes convenient to display such a photograph as a 2D surface-histogram,
as shown in Figure (2.6), where each bin represents a sample in the 2D sequence hav-
ing height equal to the value of the sample.
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FIGURE 2.5 The 2D Sample-Hold Operation That Converts A 2D Impulse To A
2D Pixel

d(t;,t,), volume = x(ny,ny)

%

height = x(n4,n,)

t 2D
sample-hold
:: ¥
eqn. (2.8)
ty i}

intensity u x(n4, n,)
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FIGURE 2.6

Two Representations of a Matrix of Numbers as a Photograph in
R

rec

4 intensity pu x(ny, ny) X(t1,tp)
A

R2 2

v

Spatial Perception

Spatial perception of natural scenes by the HVSisavery complex subject. In gen-
eral terms, the HV S system evidently processes the details in a scene by recognizing
the general shape of the principal objectsin the scene, according to their general out-
lines and according to such attributes as their shading, texture, color and so on. This
classification-approach requires that the boundaries of objects and their interior
attributes be processed as a matter of temporal priority. Many computer vision sys-
tems emulate this approach. The realistic spatial perception of objects and the proper
visual tracking of moving objects require that the objects be large enough, in terms of
the number of samples used to represent them, that they form recognizabl e shapeswith
recognizable shading and texture. This rather obvious statement explains why our
vision system is not so foolish as to attempt to process a scene by emulating the raster
scan approach that is used in video cameras.

The recognition that we require large numbers of samples to represent outlines,
texture and shading has significant practical implications. For example, on atypical
television screen we might expect that many quite small recognizable objects will be
composed of hundreds of samples. Thus, a square object consisting of 100 samples

) 2" . 2 :
occupies lessthan 1cm” inasquare screen of size (50)x(50) cm”.having
(1000)x(1000) samples. Objects consisting of less than 25 samples will generaly
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be difficult to recognize and will have little or no outline details and outlines will not
be smooth, in general. For the interior texture or shading of an object to be recog-
nized, many hundreds of samples are required.

The above discussion implies that objects are generally supported by at least hun-
dreds of samples although their textures may be represented by important detail at spa-
tial distances down to afew samples. Shading requires hundreds of samples for
realistic representation.

It is often agood approximation to assume that television images are composed of a
collection of objects having mostly smooth outlines and interiors that have such
attributes as shading, texture, brightness, etc.

Properties in Single-Frame Spatial Square Sub-blocks

If one divides atypical television frame into spatial square sub-blocks of a suffi-
ciently small size, typically 32x32 samples, then most of these square sub-blocks
cover two principal typesof sub-images. They will cover only the interior of objects
or they will cover short approximately-linear segments of the edges of objects, as
shown in Figure (2.10). This suggests that two types of sub-images, or component
images, are especially important. First, slowly varying intensities that represent
shaded interiors of objects and, second, objects that represent segments of the edges of
objects.

38
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FIGURE 2.7 Spatial Sub-Blocks of a Typical Television Image
ZI
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The Quantization and Coding of Image Values for Representation by a
Machine

The above 2D discrete-domain analog version  x(nq, n,) of aphotograph cannot
generally be represented in amachine, such as a computer, because x(n;, n,) may
have any one of an infinite number of valueson say thereal interval [0;1] , represent-
ing the gray-scale from black to white. A machine, such asacomputer, can only store
afinite number of values, thereby forcing usto quantize the value x(n,;, n,) to some
approximate value XQ(nl, n,). We represent the operation of quantization by means
of the operator Q[.] so that

XQ(n1’ n,) = Q[x(ny, n,)] (2.9)

For example, the so-called negative-truncation operator Q[.] isshownin Figure
(2.8) . Inthiscase, the operator Q[.] quantizesthe value of the signal to the nearest
entire integer that islessthan or equal to the value x(ny, n,) , which is often written
as

Xa(N, ny) = | x(ny, ny) | (2.10)
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FIGURE 2.8

Negative-Truncation Operator Q[.](2.8)
XQ A

JoooAa

o
11

Some appropriate code must be used in the machine to represent each quantized
value xQ( ny, N,) . The quantized values, which are integersin this example, are gen-
erally coded according to a suitable number representation. Most commonly, the
fixed-point binary number code or the floating point binary number code are
employed. The binary number system isreviewed in Appendix ??. Binary methods
convert the quantized signal values |_x(n2, nz)J to binary words, which are strings
of 1-digits and O-digits.

The fixed-point representation of non- negatlve numbers | x(n,, nZ)J isgiven by
the values of the binary digits b, = [0;1] 1z that satisfy the equation

W 1
(| X(nyny) ), = a b(2’) (2.12)

j=

where W isthe wordlength of the binary representation (or word) and the subscript
2 on theleft side implies the binary representation.

For example, if x(n;, n,) = 1491 and W = 8 bits, then | x(n,, ny) | = 14
and, according to equation (2.11) ,

(l_X(nz, nz)J)z = {b7b6b5b4b3b2blb0} = {00001110} (212)
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The digitized binary version of the image is therefore a matrix of 8 bit binary
words, where each element in the matrix (2.6) isreplaced with the binary word corre-
sponding to the value of the element.

Animage having numbers of row and column samplesgivenby N; = N, = 1024
requiresatotal of N;N,W bitsfor its binary representation using W-bit words. In
this example, thiscorrespondsto (1024)(1024)(8) = 8388608 bits. Clearly, this
isasignificant memory storage requirement, especialy if we want to store large num-
bers of digitized images. For this reason, methods of compressing such memory stor-
age requirements are very important and will be considered |ater in this book.

A Digitized Television Image

A digitized television image is simply atempor al sequence of the above 2D dig-
itzed images and may be written as the quantized 3D signal

x(n) = x(ny, n,, ny) (2.13)
where

7 T oL
(N, ny) I Ny, and ngl N

(2.14)

The domain of adigitized television signal is of finite extent in the two spatial
domain variables. However, in the temporal dimension ns , it is (for all practical
purposes) of infinite extent. The individual spatial images are referred to as frames
and so the temporal index n; pointstothe n, th framein the virtualy-infinite
sequence of frames. We may write

1

dmn[X(t)] = N, gXN (2.15)

This discrete-domain is contained in a 3D solid rectangular extrusion of infinite
length in the temporal direction, as shown in Figure (2.9) .
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FIGURE 2.9

3-tuple (0,0,0)

The 3D Domain of a Digitized Television Signal x(t)

Therangeof x(t) dependsonthewordlength. For example, in the above example
where the wordlength W = 8 bits,, the values of xgt) lie on the closed integer
interval [0255] andso (rng[x(t)] =[0;255])1 N~ . Inapractical situation, we
might need to consider how to code a quantized signal that might lie outside this range.

We may sketch a digitized television image as shown in Figure (2.10) . Thedis
crete nature of the temporal dimension is emphasized in this sketch, where individual
frames are evident and drawn separately. The spatial samples are rectangularly-tiled
because thisis approximately the way we see them at close range.

Smooth Temporal Motion

It is very important to recognize that the HV'S (and the design of the television sys-
tem) require that the television image is, for the most part, changing sufficiently
slowly with time that most parts of most consecutive frames, x(t,,t,, t;) and

X(ty, t,, t;—1) , differ only slightly from each other so that the sequence of images
retains the perception of natural-looking smooth motion. Thisis another example
where perception is different than reality in the sense that the temporal domain is per-
ceived to be continuous, partly because the temporal averaging of the HV S often cre-
ates theillusion of smooth motion if the frame rate exceeds about 60 frames per
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second. The opticas of both the typical television cameraand the typical CRT screen
introduce further temporal smoothing.

FIGURE 2.10

2.4

Representation of a Digitized Television Image x(n;, n,, ny)

A tl

3-tuple (0,0,0)

\

i/ t3
N\

%

CONTINUOUS-DOMAIN 3D IMAGE OBJECTS

Many images are composed of complicated collections of objects, having charac-
teristic outlines and characteristic interiors. In order to provide a framework for the
mathematical representation of 3D images, it is useful to consider some elementary
image objects having idealized properties. These objects may be employed as the
components from which more realistic and complicated images are constructed.

For example, we have noted that single-frame sub-images might cover part of the
interior of an object and exhibit a smoothly-varying spatial variation of intensity, cor-
responding to a shadowed region. Alternatively, a single-frame sub-image might
cover an almost-linear segment of the curved edge of an object, in which case we
might expect the intensity to change abruptly in directions normal to that edge. 1n both
cases, these sub-images might be changing their spatial locations from frame to frame,
asthey move with time, asindicated in Figure (2.11).
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FIGURE 2.11 Sub-Image Coverage of A Smooth Interior and of an Edge
Segment
tempora
movement

2, /‘
white

f / )/ exterior

edge

L

shaded |
interior

\_ J ®

\ A

These observations motivate the following introduction of idealized mathematical
models for simple 3D objects. We shall emphasize the 3D case, although the 2D case
iseasily considered by dropping the third dimesnion n; and the 4D case by obvious
extension to the fourth dimension n, .

We shall consider here the conti nuous—domair31 and often pretend that the objects
have support throughout the entire 3D region R™ . In practise, it must be recognized
that actual signals will have a more restricted domain, such as (2.15) above. Further,
the signals will be sampled. The effects of finite extent and of sampling are impor-
tant and must later be taken into account. For now, we ignore these effects.

24.1 A 3D Gate Pulse Signal of Infinite Extent in R .

Consider the signd
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was =3
X(t) (o] 17 ( t I Rpulse) (216)
0, otherwise

where the region of support R3 isdefined as

pulse

RS il ReLILEd it +dot, +dgta £1,, (I3, 1,,d;,dy dg T RY), (1<) (2.17)

pulse

Recall that the equation
dit; +dyt, +dsty = | (2.18)

describesaplanein R® having normals d that are given by the vectors

d =+ [dl d, d3:| (2.19)

and having a perpendicular distance | from the origin, as shown in Figure (2.12).
Therefore, theregion |, £ d;t; +d,t, + d;t; £1,, , asdefined in equation (2.17), is
that contained between the two 2D planes d,t; + d2t2 +d;t; = 1, and
dit; + dot, + dst; = I, . Thisisaregion of support RS ulse havmg the shape of a 3D
diceof uniform thickn%s withinwhichthedefined signa  x(t;,t,, t;) hasthevalue
1, asshownin Figure (2.12).

Thesignal isa 3D pulse of duration (l,—1;) inthedirectiondefinedby d . It
represents the type of signal that isideally reflected from an infinitely distant target
and detected, as afunction of time t; , by a2D spatially-rectangular array over the
variables t; and t, in such applications as the detection of reflected radar or sonar
signals. The pulseis observed, asafunction of time t; , to move acrossthe 2D spatial
imageinvariables t; and t, . We shall return to the subjects of dynamic 2D spatial
images. Thissignal might also represent aline-edge of thickness |, -1, thatis mov-
ing with constant temporal velocity across the spatial plane.

Thissignal is clearly discontinuous-valued and therefore non-analytic.
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FIGURE 2.12 The 3D Plane and the Continuous-Domain 3D Gate Pulse Signal
of Infinite Extent

51 A

normal, d

t3

positive octant
only shown

Region of R> s
in positive octant
where | x(t) | =1

2.4.2 Exponential and Sinusoidal 3D Signals

If the reader is not completely familiar with the 1D exponential series exp[x] and
its relationships with the sine and cosine series sin(x) and cos(x) , it isrecom-
mended that Appendix A be reviewed.

In order to describe the 3D exponential series, we shall require the 3D complex fre-

quency vector
s=[s, S, ss]TT c? (2.20)
where s = s, +jw, , i = 1,2, 3. Wereferto
_ Tt 53
w=[wy, wy, W] IR (2.22)

asthe 3D (real) frequency vector. Given
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tot,t,t] T R, (2.22)
theinner product of thetwo vectors s and t isdefined as

sxt®s't = s;t, +s,t,+s5t,1 C* (2.23)

The 3D Complex Exponential Signal

The 3D complex-valued s-domain exponential seriesis defined as

x(t)° exp[s't]=€e*'T c* ,t1 R® sl C° (2.24)

Withs; © s; +jw,;, we shal often be interested in this signal over the region where
s; =0,i =1,2,3, corresponding to the so-called 3D phasor exponential signal

x(t) = exp[jw't] =" 1 c? (2.25)

The 3D Sinusoidal and Cosinusoidal Signals

Taking the real and imaginary parts of equation (2.25) gives

1

Re[exp[jw't]] = cos(w't) = cos(w,t; +w,t, + Wsty) T R™ (2.26)

and
Imlexp[jw't]] = sin(w't) = sin(wyt, +w,t, +wgty) T RY (2.27)
The domaé\in of these two sinusoidal 3D signals, in terms of the independent vari-
able t,isR™ . Such signals are important component signals of 3D images. They

appear in the next chapter, where they form the basis of the frequency domain descrip-
tion of 3D signals.

The 3D Sinusoidal Signal in RrerR1

Consider the 3D signal
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X(1)° sn(w't) = sin(wyt, + Wot, +Wsts), tT R, xR' (228

asshownin Figure 2.13, whereweinterpret t; and t, asspatial variablesand t,
as the temporal variable.

Thissignal has a number of properties that are noteworthy. If viewed asatime-
varying spatial image, the signal moves with constant temporal lveI ocity across the
spatial viewing areaR, .. . Throughout the 3D region R, .XR ", itsintensity is con-
stant in the direction d and varies sinusoidally in the direction p , and these two vec-
tors are orthogonal. Signals that have these properties will be studied in further depth.

FIGURE 2.13 The 3D Sinusoidal Signal in Rrechl

all

R3

In order to establish the mathematical framework for the discussion of various
types of MD signals, we begin with a brief review of the MD geometry of lines and
planes.
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2.4.3

An MD signal that is duration-bounded in at least one dimension and duration-
unbounded in at least one dimension is defined as partially duration-bounded. Such a
signal could have a ROS that is of infinite extent in some of the dimensions and of
finite extent in the remaining dimensions.

The analysis and design of signal processing systemsis simplified by considering
special classes of generic signals. These signals are widely used for such purposes as
the generation of suitable test signals. Some of them occur as component signalsin the
output response signals of signal processing systems. The more important of these sig-
nals are now considered.

Step Functions
The MD continuous domain fully causal unit step function is defined as
(2.29)

- M
1! t Rcausal

0, otherwise

uN(t)© (2.30)

where

Causaj (; t,20 (2.31)

That is, theregion R?ausm isthe region of MD Euclidean space wherethe t, are
all non negative. Thisregion |sdef|ned as the fully-causal region. The continuous
domain 2D unit step function u (t) isshown in Figure 2.10 . Such functions are use-
ful for determining the transient behaviour of a system to the introduction of astep dis-
continuity and also as a multiplicative functlon for bounding the duration of asignal
function x(t) ; for example, x(t) [u (t) —u (to)] duration bounds x(t) to
some MD-rectangular region of support defined by the origin t = (0, 0, 0, %, 0)
and the far corner ty = (tg, top, tog Y4, ton) -
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FIGURE 2.14 The Continuous-domain 2D unit step function

A tl

244 Impulse and Knife Edge Functions

The MD continuous domain unit impulse function dN(t) is defined by the fol-
lowing three constraints:

d"(t) = 0," t|(t* 0) (2.32)
and
¥
od (tdt = 1 (2.33)
-y

where the integral implies MD integration over the entire region R™ . Thisfunc-
tion is shown in Figure 2.10 for the 2D case. Many other types of impulse functions
may be defined for the MD case. For example, the 2D horizontal and vertical impulse
dlices, or 2D knife edge functions, shown in Figure 2.10 have infinite magnitudes
along one of the axes.
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Discrete domain versions of the impulse and knife edge functions may be defined.
We shall be particularly interested in the distance normalized discrete domain MD unit
impulse function dN(n) which is defined as follows

0,"nnt o
dV(n)© 234
OLR (2.3

and is shown in Figure 2.10 for the 2D case.

25 MD Lines and Planes

The MD Line

We define the MD line (or hyperline) as the region R,'\i'nei R where

t,— t,— ta— ty—
Rll\ilneotlzl91:292:39’321/4:d9d_/4
by b, bs b1g

t.— -
Vs = mb—g”‘,(bld, gy dT R, OEdE D) (2.35)
m
The direction of thisMD linein R? IS given by the direction vector

T
> = |by by by % by ¥ by (2.36)
and the MD line passes through the N-tuple

g = (9, %, U3, %, Gy ¥4, On) (2.37)

Theunit vectors (that is, vectors of unit length) that point in the same direction as
the line are given by

T
_ | P by bg by by

n = Y, Y, (2.38)
bl P2l [Psl2 ~ [1Pal2 [Pl
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The operator |[[bll, onthevector b isreferred to as the Euclidean Norm (or
Euclidean length) of the vector and is therefore defined by the Pythagorean expression

b= b=bi=b5=% =b5=% = b} (2.39)

The 3D Straight Line

For N = 3, thestraight line Rﬁne in 3D Euclidean space is given by

3 _4-g _,-0, 13-03
RIine0 tl - bl - b2 - b3 (240)

Thisline passes through the 3-tuple g = (g;, g, 93) -

The radian angles between the line Rﬁ ne and the three axes are easily shown by
simple geometry to be given by

gy = acosg— -+ (2.41)

wherek = 1,2,3 and b = ,/bi + bg + bg isthe Euclidean Norm of the vector
b = b, b, bs;l . Theangles g, aredefined asthedirection cosinesof theline
b thelr cosines, according to the above equation, are equal to the three direc-
tional componentsof n .

Consider anumerical examplewith b; = 1, b, = 2, by =1,
g = -1 06 =2 g3=3,|by| = J6, asshownin Figure2.15. Wehaveb = /6 ,
the line passes through the 3-tuple (-1 2 3) and the unit vector n in the direction of the
lineis (1146, 21,/6, 10.46) . Thedirection cosinesare given by the 3-tuple of angles
' q = (acos(1m.6), acos(2n/6), acos(19y6))
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FIGURE 2.15

A 3D straight line with b, = 1, b, = 2, by =1

The MD Plane

The concept of aMD plane, sometimes referred to asahyperplanefor N> 3 | isa
direct extension of the usual formulation of a 3D plane. We define the MD plane, or
hyperplane, R}, asthe region

RM_ ] R'V'|

plane

_ (2.42)
alt1 +a2t2+ a3t3...+adtd... +ayty =1

wherel and a g1 £ d £ N, are constants.

The MD normal to the above hyperplane is defined as the MD vector

a, a, a a am T

lallall;lal, ™ llal, ™ lall,
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The 3D Plane

The 3D planeistheregion where

3 i 3
Rp'a”e 'R |a 1tp @ty +agtg.tagyty.. +anty = (2.44)

It may be shown that the perpendicul ar distance between the plane and the originis
equal to|l. Thetwo 3D normals to the plane are given by

a, a, ag-f
n = .|_.|:_1_2_3} (2.45)
lalyllal;lall
Consider anumerical examplewitha, = 1, a, = 2, az3= 3,1 = 1 asshownin

Figure 2.16. The plane R 3, 4 is perpendicular dist@ce 12 fror§ the origin and the
two unit normalsto the planearegivenby n = +| —, —, —

Lyia e Jial

FIGURE 2.16 A 3D plane witha; =1, a, =2, a;=3,1 =1

A tl
I

perpendicular ]
distance

| 0,/14
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2.6

2.6.1

MD COORDINATE TRANSFORMATION

L et the independent MD N-element vector variable t be pre-multiplied by areal
N~ N matrix A to give the new N-element column vector u according to

u = At. (2.46)

The vector t is subjected here to alinear transformation according to the transfor-
mation matrix A . It istransformed into the vectoru . Clearly, the N row elements of u
are linear combinations of theN row elements of t . Such linear transformationsare
fundamentally important in signal processing.

Rotational Transformation about One Axis

Consider tThe 2D coordinatevectort = Ltl t, T and anew rotated coordinate vector
u = |u, l;é] , shown in Figure 2.17 , where the latter is obtained from the former by
i

aclockwiserotation of g, radians. Thenitis easily shown that
u= Ryt (2.47)
where
cos(, —Sn
Ry = [ oo msNty (2.48)
sing, cosq,

and isreferred to asthe rotation matrix for a 1D system. Thisrotation has the effect
of rotating a 2D coordinate system about the first axis t; by g, radians.

Similarly, in the case of aMD coordinate system, a coordinate rotation R, about
the dt" axis by d4 isachieved by means of the transformation matrix
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2.6.2

Example 9

1000. . . ...00
0100. . . ....0
00100 . C e
00010 O C e e

..001 O O O0....
.. .00 cosqy—singy;0 . . ..

.. 0singy cosqy; 00 . ..
.0 0. 0O 10...

..... . 0 010..
..... . . 00100
0o.... . . .0010
00... . . .001

MD Rotational Transformations about Multiple Axes

Ry_1Rny_2%4 RoR;

U = Ry_;Ry_YaR,R;t = Rt

d=N-1
det[R] = (O det[R,] =1
d=1

(2.49)

Let usapply N-1 successivetransformations R, then R, , then R, ... then
Ry _1 tosequentialy rotate the coordinate system about N — 1 of the axes, oneat a
time; first about the axist, , then about theaxist,, and so on until the rotation has been
performed about N — 1 of the axes. This genera rotation of the MD coordinate system
istherefore given by the N” N rotational matrix R where

(2.50)

(2.51)

ThesingleaxisN~ N rotational transformation matrix R, has the property that it
is skew symmetric and its determinant det[R,] = 1. It follows that

(2.52)

Rotations about the first and second axes t; and t, correspond to
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2.6.3

cosq, —sing; O 1 0 0
Rl = |sg ng, cosq, 0| and R2 =10 €osq, —Sinq2 (253)
0 0 1 0 sing, cosq,

and therefore the general 3D rotation can be written as

Cos(; —sing, 0
R = RjR, = |cosq,sng; €osq,cosq; —sings (2.54)
sing,sing,; sing,cosq, cosq,

corresponding to the 3D rotational geometry shown in Figure 2.18.

Orthogonal Transformations

This section provides areview of some properties of vectors and matrices that are
especialy relevant to MD coordinate transformations and also to later considerations
regarding the orthogonality of signals. The material is not essential for an understand-
ing of this chapter and therefore the reader may choose to omit this section at thistime.

The vector components t, in equation () are usually thought of, at least in the 3D
case, as forming mutually perpendicular axes. Vector components that are mutually
perpendicular are said to be orthogonal. So far, we have perhaps intuitively under-
stood that any N-tuple location in RN can be found by specifying all N components t,,.
We now formalize and generalize some of these concepts.

Real Orthogonal Vectors

Consider thereal vectors vy, vy, 4, v, %4, vy, and the real numbers
aq, ay Ya,ay Ya, ay. Now, if

1 1 1
a;vytasv,tagvgtyatay, +va+ayvyt 0 (2.59)

unlessa; = a, = az =% =ayq =% =ay = 0, thenthevectors
aq, a, Y4, ay Ya, ay arelinearly independent.

If every MD vector win RN can be expressed in terms of some linear combination
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= 1 1
W = ajvytayv,tagvgt Ve tagy v tayvy (2.56)

by making a suitable choice for the N real weights a;, then the set of vectors
Vy, Vo, ¥4, Vj,¥a, vy is said to span the space RN.

If the vectors vy, v,, ¥4, v, %, vy arelinearly independent and if they span the
space RN | then they are sai to form abasisfor the space RN. It is easily shown that
the wel ghts a;, a, ¥, ay Ya, ay that satisfy equation (2.56) are unique; that is, no
other combination of the vectors equal w. The number of basis vectors, in this case N,
is defined as the dimensi on of the space of w .

Theinner product of two vectorsu and v isdefined asuTv . The two vectorsu
and v are defined to be orthogonal if their inner product is zero; that is, if

ulv =0 (2.57)

We define a set of mvectors vy, v,, %2, v, %4, vy to beamutually orthogonal set
if each of the vectorsv. is orthogonal with the other (N-1) vectors, v;, i j. Therefore,
N mutually orthogonal vectorsvy, vy, ¥4, v;, %, vy have the property that

vivi =0, il]j (2.58)

vTv = vil, » it (2.59)
We may think of each one of these vectors as pointing in the direction of one of the
mmutually perpendicular coordinate axesin RN. The above mutually orthogonal vec-
tors may each be scaled to vectors of unit length (that is, unit vectors) by dividing
through by |v;|, , in which case they are defined as an orthonormal set and satisfy

the orthonormal equations
viv. =0, it]j (2.60)

vivi =1, i =] (2.61)

A basis of vectors vy, vy, ¥4, v, ¥, vy that satisfies the above equationsiis an
orthonor mal basis. The most important orthonormal basisis the so-called standard
basis, or unit basis, which is given by the following N vectors
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1 0 0
0 1 0
0 0 0
y = € = Y, 6y = (2.62)
0 0 0
0 0 1

each of unit length and each pointing in the direction of one coordinate axis.
Orthogonal Matrices: Let Q bethered N~ N matrix
Q = [vy V,% ViYa V] (2.63)

where the columnsyv; - therefore have dimension N " 1 . We define an orthogonal
matrix Q asarea square matrix having columns that are orthonormal. It is easily
shown, using the orthonormal property of the columnsin equation (), that

Q'Q =QQ" =1 (2.64)

where | isthe N~ N identity matrix. Also, since

Q'Q =1 (2.65)
it follows that

Q' =q™ (266)
and

T
Q =0 (2.67)

Equation () describes an important property of orthogona matrices; that is, the
transpose of an orthogonal matrix isequal toitsinverse.

Determinant of an orthogonal matrix It iseasily shown that, for any two matrices
A and B,

det(A)det(B) = det(AB) (2.69)
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It then follows from equations ( ), (), () and () that, for any orthogona matrix Q,

det(Q 1) det(Q) = det(Q")det(Q) = 1 (2.69)
from which it follows directly that
det(Q) = +1 (2.70)

Rotational Property of Orthogonal Matrices: We are now in aposition to derive an
especially useful property of orthogonal transformations. Consider that two vectors,
X, and X,, are both subjected to the same orthogonal transformation Q; that is

y; = Qxgandy, = QX, (2.71)

We want to find out the effTect of the oTrthogonal transformation Q on the inner
product; that is, %o comparex X, V\_/ith y1Y,. Using the elementary property of trans-
posesthat (ab) = b a ,wewrite

Yo = (Qx) (Q%) = (4Q)(Qx) =x(Q'Q) (272
and, using equation (), thissimplifiesto nyl = xle :

We have shown that inner products of real vectorsareinvariant under orthogo-
nal transformation. A second result follows by choosing x; = X, (sothaty,; = y,)
and the above equation simplifiesto

T T
Yi¥1 = X1X%q (2.73)

which, using the property of matrices that a'a= lal, , further simplifies to
Malla = X4l (2.74)

Therefore the orthogonal transformation Q preserves vector lengths (that is,
Euclidean norms). The length of avector in the coordinate systemt isthe same asits
length in the new coordinate system u = Qt for rea square Qif andonly if Q is
orthogonal. Thisimpliesthat, in 3D and 2D Euclidean spaces, the orthogonal transfor-
mation isarotation of the vector about the origin.

Thisimplies that the matrices R;and Ry in Section ?.? are real orthogonal matri-
ces. The reader may verify this by checking that the inner products of their column
vectors satisfy equation ().
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Unitary Complex Vectorsand Unitary Complex Matrices: The above analysis
changes only dlightly when the vectors are allowed to be complex. For example, in the
above definition of linear independence, the weights a; and the vectors are allowed to
be complex. Theinner product of two complex vectorsx andy is defined as
(X*) 'y , where the superscript asterisk indicates complex conjugation. We will
denote the operations of conjugation followed by transposition with a superscript dag-
ger T sothat we may write

xto (x*)" (2.75)

Two complex vectors are defined to be orthogonal if their inner product is zero; that
is, if

(x)'y =0 (2.76)

The length of a complex vector x is defined as the inner product of x with itself

IxIl, = (x'x) (2.77)

Orthonormal, or unitary, complex vector s are defined in the same way asfor real
vectors. Tpat is, asystem of complex vectorsy,, Y, %, IRZDTY isorthonormal , or
unitary, i

xiij =0, itj (2.78)

xiTxJ- =1 i=j (2.79)

If the columns of a square complex matrix Q are unitary, then the matrix is said to
bea unitary matrix.

It iseasily shown that a unitary matrix has the important property that

Qt = Q™ (2.80)

It is now easy to show that the transformation of acomplex N~ 1 vector x by a
complex unitary N” N matrix Q preserves lengths. Let

y = Qx (2.81)

From equation ( ), the squared length of the transformed complex vector y isgiven
by
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2.6.4

(Iyly)? = yty = (QX)T(Qx) = (x'Q"(Qx)

= x"(QTQ)x = x"(Q™'Q)x = x'x = |x|, (2.82)

so that ||y[|, isequal to |x], , proving that the length of a complex vector is pre-
served under a unitary transformation.

This completes the brief review of properties of matrices.

Linear Trajectory MD Signals

Linear Traectory (LT) signals are an especially important class of MD signals.
They occur in many kinds of signal processing systems, including television, radar,
and seismic signal processing.

AMD signal x,\gt) isalLinear Trajectory (LT) signal if there exists a constant
MD vector n1 R such that thedirectional derivative |||l is zero every-
wherein the domain of the signal.

This definition impliesthat aL T signal x(t) isconstant along all MD lines having
the same direction as the MD vector n. In the 3D case, for example, aL T signdl is
constant along all straight lines having a particular direction n. We shall therefore
refer to the unit vector in the direction of n as the constant signal vector . The direc-
tion of n isthe constant signal direction of the LT signal. The signal

sn(w,t; +w,t,), tl R™,that was considered in Example 16, is an example of a
2D LT signal because it has constant value along all 2D lines having direction
arctan(-w, tw,) corresponding to the constant signal vector

w, wy 7T
n = [——————] (2.83)
lIwll 5 Iwll,

62

Copyright L.T. Bruton MD SIGNAL PROCESSING



