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cvapTEr 3 LiInear Trajectory and Plane
Wave 3D Signds

3.1 LINEAR TRAJECTORY MD SIGNALS

Linear Trajectory (LT) signals are an especialy important class of MD signals.
They occur in many kinds of signal processing systems, including television, radar,
and seismic signal processing.

A MD signal x&t) isaLinear Trajectory (LT) signal if there existsa constant
MD vector n1 R such that thedirectional derivative x(t) £(fn) iszero
everywherein the domain of the signal}.

Thisdefinition impliesthat aL T signal x(t) isconstant along all MD lines having
the same direction asthe MD vector n . Inthe 3D case, for example, aL T signal is
constant along all straight lines having a particular direction n. We shall therefore
refer to the unit vector in the direction of n asthe constant signal vector . The direc-
tion of n isthe constant signal direction of theLT signal. The signa

sn(wyty + woty), t1 R?, that was considered in Example 16, is an example of a 2D
LT signal because it has constant value along all 2D lines having direction
arctan(-w, tw,) corresponding to the constant signal vector

.
n = [""2 “"’1] (3.1)

[Wall, W,
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3.1.1

The 3D Linear Trajectory Signal

Supposethat a3D LT signa x(t) hasadirecti on of constant intensity glven by n
and that we consider any two parallel 3D planes Rp,anell R® and R; lane2 | R’
having the normal n, asshown in Figure (3.1). Then it follows that the value of the
signal x(t) atitsintersection with the pIane RpI aney ISexactly the same asthe value
of x(t) atitsintersection with the plane Rplanez 3D LT signals x(t) can beconsid-
ered as propogating without variation in the direction n, as shown in Figure (3.1).

FIGURE 3.1

Intersections of A Linear Trajectory (LT) Signal Haer\g the
Cgnstant Intensity Vector n With Parallel Planes R, and

Rpjanez Having Normals n

Intersections of LT Signals In Planes Parallel To An Axis

We now want to derive arelationship between theintersections of x(ty, t,, t3) with
parallel planes that are normal to one of the axes.

Consider two parallel planes, R? planer and RpI ane2» having anormal n, that points
along the t; axis and thereforeis glven byn; = |g o 1] »asshowninFigure (3.2).
Let x(t,t,, t;) bealT signal, where the constant sig vector n |sgenerally differ-
ent from n;, and denote the 3-tuple (t,, t,, t3) by the point Alnthe plane Rp|ane1, as
shownin Figure (3.2). Further, let the 3-tuple B lieinthe plane Rmanez such that the
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line AB isin the direction of the constant signal vector n, as shown in Figure (3.2),
implying that the signal at B has the same value asthe signal at A.

FIGURE 3.2 A Rectangular Region Enclosing a 3D LT Signal

“Consider the 3D rectangle [A; B] in Figure (3.2) and let the two planes R;|anel and

RSIaneZ be perpendicular distance Ct5 apart, as shown. Then it follows directly from

the geometry of this rectangle in Figure (3.2) that the 3-tuple B is given by
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B = & + Dt,—, t, + Dt,—2, t, + Dt 3.2
1t Pl Plans s ™ Plag (32)

However, the signal hasthe samevalueat B asat A, s0 x(B) = x(A) and there-
fore, from equation (3.2),

nq{ n, o _

which isthe required result.

Equation (3.3) impliesthat, if wedicethe LT signal in successive planesthat are
normal to the t; axisand Ct; apart, then the signalsin each of these successive planes
are identical except that they undergo a shift from plane to plane that is given by

Dt3(n, tng) inthedirection of the t; axisand Dty(n, tng) inthedirection of the
t, axis. This corresponds to the 2D shift vector s; where

0 T _ Ny Ny
s,° [AC, CG] [(Dt3)n_3,(Dt3)n_J (3.4)

where AC and CG are shown.

The Spatio-Temporal Case: If t; isthetemporal dimensionand t; and t, are
spatial dimensions, then s, describesthe relative spatial displacement of the LT image
signal over any timeinterval Ct;. It followsthat the 2D spatial velocity vector is
given by

n,n,TT
Vs = [_1_2} (35)
N3N3

Thisexpression for the 2D spatia velocity vector in the 2D dynamic imageisa use-
ful practical measurement when designing 3D image-enhancement algorithms for 3D
filters.

Example10 A Typical 3D LT Movielmage Signal

Consider part of atypical continuous-domain movie sceneinwhich an object signal
x(t),t1 R® moveswith uniform vel ocity across the movie screen at an angle of 30
degreesto the horizontal in the NE direction, as shown in Figure (3.3) , and suppose
that the object covers a distance on the screen equal to 20 cmin 5 seconds.

Find the 2D spatia shift s; and the constant signal direction n of the 3D LT signal.
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We have, AC = 2cos(30°)cm.and CG = 2sin(30°)cm . So, in equation (),

0 o 200y eml T = (201 n, 1
S3° [2c0s(30°)cm, 2sin(30°)cm] = 5n_cm, 5n_cm (3.6)
3 3

and
n = [(2cos(30°) £5)nzem  (2sin(30°) £5)n,ecm ngsec] (3.7)

We note that the first two components of the vector n tells us the horizontal dis-
tance and vertical distance moved by the signal object intimen,. If wenormalizeng to
one second, then

n = [(2cos(30°) t5)cm  (2sn(30°)t5)cm 1 sec]’ (3.8)

Continuing this example by assuming that the 3D movie signal is uniformly sam-
pled at 30 pixels’cm. along the t; and t, axesand at 1 frame every 1/60 second on the
time axis t; ,wearrive at the uniformly sampled version x(n), n 1 z° , of thisimage.
The corresponding direction of a constant signal vector in this discrete integer 3-tuple
domain is given by the direction of the vector

n = [(2cos(30°) £5) ~ 30 pixels (2sin(30°) £5) ~ 30 pixels 1~ 60 pixels]'
(3.9)
or, dividing each element of n by 60,
n = [(cos(30°) 6) pixels (sin(30°) 5) pixels 1 pixel]I (3.10)

Of course, we cannot expect that this direction n in R will cause sample pointsin
successive temporal framesto coincide with s;-shifted versions of the sampled image
x(ny4, n,, ny) . These sample points do, however, correspond to rectangular samples
of s;-shifted versions of the continuous-domain LT image X(t, t,, t3) .

FIGURE 3.3 An Example Of A LT Television Signal in R®
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3.1.2

MD PLANE WAVE SIGNALS

Plane wave signals are very common. In the 2D case, plane waves x(t,, t,) are
often encountered in applications where alinear array of detectors measuresthe arrival
of asignal from a distant source or target. Typical applications include seismic wave
detection systems, linear array radio and sonar frequency directional detectorsin radar
and navigation systems, baseline array detector systemsfor astronomical imaging. The
applicationsfor 3D plane wave detection and enhancement are becoming more impor-
tant as the processing speed and memory storage capability of modern signal process-
ing systemsis able to handle the large quantities of data. In the 3D case, seismic
wavefront detection is now important, because it allows the direction of the seismic
source to be more accurately determined than does 2D seismic processing. The poten-
tial for employing 3D plane waves in the compression, enhancement and transmission
of television signalsis of also of growing interest.

TheMD Plane

We define a constant vector d0 [d,,dy,%,dy,Ya, dN] i RY and consider the
vectors t © [ty, ty, Y4, ty, Ya, tN] I R" that satisfy the equation

d'to dyty +doty +Ya dyty + Yadyty = | (3.11)
wherel isascalar constant. The reglon inR" where the above equation is satisfied
is defined asthe MD plane and denoted RIolane The vector d isdefined asthe normal
totheplane R}, plane- | thelength isunity, then d is referred to as the unit normal.

One may expressthefunctl onal dependence of this planar region ond and | by writing
the region as Rplane(d |) where

Rptane(dh 1) © {1y, 1, ¥ 1, ¥, ty[dyty + dyty + Vadyty + Vadyty =1} (3.12)

or, equivalently,
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Rglane(d’ )° {tld It =1} (3.13)

Let d be aunit normal vector. Then the length | isthe projection of t in the direc-
tion of d . Inthe 3D case, | has the geometric interpretation that it is the shortest dis-
tance between the 3D plane and the origin, as shown in Figure 2.72.

Plane Wave Signals

By considering all possible values of | intheinterval [—=¢ ,¥], one generates an
infinite number of MD planes having the same normal d.

The MD Plane Wave Signal

A MD signal x(t) isaMD planewaveif there existsaMD vector d such that, for
every |, x(t) isconstant everywhere in each of the planes Ry .o(d, 1) .

For aparticular d, the constant value of x(t) in each planeisonly afunction of |
and may be written as X 4ne(l) - The plane wave signal can therefore be described in
the alternate form

Xprane(D)]d 't = | (3.14)

The unit vector in paralel with d is defined as the propagation vector of the MD
wave and the direction of d is defined as the dir ection of propagation of the MD
plane wave.

3.1.3 3D Plane Wave Signals

Two of the infinite number of 3D planes having the normal d are shown in Figure
2.22 . Thesigna x(t;, t,, t3) isconstant in each of these planes, having value
Xp\Jjane(Il) intheplane Ry ,ne(d, ;) and value X, ,,0(15) intheplane
Rpjane(ds 1) , asshown in the diagram. These planes have shortest distances |; and
I, from the origin, respectively, as shownin Fig.2.?72.

In general, there is a continuum of such planes, onefor each | in [-¥ ¥]. Over this
range of | , thefunction X ,(1) describes the variation in the value of the plane
wave as a function of the shortest distance of the 3D plane from the origin. Clearly, a
3D plane waveis completely described by the function X ,n¢(l) and the vector d. It
may be written as

Xplane(l)ldltl + d2t2 + d3t3 =1 (3-15)
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Example11l A 3D Plane Wave Gate Signal
Consider the 3D plane wave signal X,jane(1)]d;t; +dyt, + dgtz =1 defined by
de1 1 2] (3.16)

Xojane(1) ® U (1 =1) —u(1=1), 1, <1, (3.17)

lwhere ul(l) istlhe previously defined 1D unit step function given by

u(l)° 1,120, u(1)°0,1<0 . Thecorresponding 3D signal x(t;, t,, t;) isshown
in Figure 2.23 from which it is observed that the signal is essentially a 3D unit ampli-
tude pulse with a planar wavefront that is perpendicular distancel, from the origin.
The pulse has thickness(l, — I;) and direction of propageation [1, 1, 2] ' This exam-
pleistypical of the envelope of areflected radar or sonar pulsethat isreceived on a2D
spatial array of detectorsint; andt, asafunction of timet,. Later, we shall be inter-
ested in signal processing algorithms that can selectively enhance such pulses on the
basis of their direction d.

Example12 3D Plane Wave Signalsfrom 1D Signals by the Rotation of Coor -
dinates

Consider the 1D signal X 5e(t1), t,T R, asshownin Figure2.72. This 1D sig-
nal may be used to describe the 3D plane wave signal

Xorane(t1: 12 t3) © Xpjane(l) |1t1 +0t, + Oty = | (3.18)

This 3D plane wave X(t4, t,, t3) hasthe direction of propagation given by the unit
vectord® (1 g o| Wwhich pointsaong thet; axis. The constant signal planes are
therefore perpendicular to thet, gxis. Using the prevaus notation for aplanein R3,
such planes may be written as R™(d, t;)|d ° |;1 0 O:J ,—¥ £1 £ ¥ . Thesignal has
value X, ne(t1) everywherein the planes R™(d, t;) , asshownin Figure 2.7?. Con-
sider now therotation of the coordinate system t by means of the rotationsR; and then
R, , asshown in Figure 2.7?, resulting in the new coordinate system u where

U= R,Rt (3.19)

Let usfind the direction of propagation d,, of the plane wave in the new rotated
coordinate systemu. In the coordinate system t, the unit propagation vector

do [1 0 0] and
d, = R,R;d (3.20)

Substituting for d and using the expression in Example 177 in the above equation
gives
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3.1.4

3.1.5

cosQ; —-snq, 0 |1 Cosq;
1, = |cosq,snq, cosg,cosq, —sng,||0| = |cosg,sing, (3.21)
sng,sing, sing,cosq; cosq, |0 sing,sing;

We have determined the propagation vector d, of the plane wavein the new coordi-
nate system u. The variation of the signal in the direction of d, is unaltered by the
rotation and remains as X ,ne(l) , wherel isthe distance from the signa planeto the
origin in the new coordi nate system The equation of the plane wave in the new coor-
dinate systemis X;ane(l) |d u=0.

Example13 A 3D Impulse Plane Wave

As aspecia case of the 3D Plane Wave signal, consider the signal

Xoane(1) © d'(1=1)]d't = | (3.22)

where d'(1) isthe 1D unlt impulse function. Thesignal x(ty, t,, t;) iszero every-
where outside of the plane R Iane(d l,) . Everywhereinside the plane
R Iane(d l,) ,thesignal hasmflnlte magnitude, as shown in Figure 2.24. Find the 3D
mtegral of thissignal in a3D volume that completely encloses the plane

glane(d I,) . (Hint: refer back to the definition of the 1D impulse function and con-
sider first the 3D integral in afinite size box that encloses some finite area A of the
plane.)

Plane Waves as a Subset of LT Signals

Consider the general MD plane waves {Xplane(l)l =I,-¥ £l £¥} and,inpar-
ticular, consider the MD plane d't = 0 that passes through the origin 0. Further, let n
be aMD vector that is directed out from the origin O such that it liesin this plane; that
is, suchthat d > n = 0. Any such vector n is a constant signal intensity vector and
therefore the general MD plane wave signal isa special caseof aLT MD signal.
For N>1 it ispossible to find an infinite number of constant signal unit vectors n that
satisfy d > n = 0 . For example, in the case of 3D Plane Waves, thereisclearly an
infinite number of constant signal unit vectorsn that liein the plane, each pointingin a
different direction, as shown in Figure 2.22.

A 3D Sinusoidal Plane Wave

Consider the 3D signal

X(t) © sn(wity + Wty +waty), t1 R® (3.23)
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Thissignal is constant and equal to sin(l) in theinfinite number of parallel 3D
planes given by

Wity +Woly +Wat; = w't =1 ¥ EIE¥ (3.24)
Therefore, thesignal sin(w,t; + w,t, + wst,) isa 3D plane wave for which
Xoiane(l) = sin(l), ¥ EI£¥ (3.25)

This plane wave may therefore be written as sin(l) |wI t wherethe 3D direction of
the propagation unit vector d , which is normal to the 3D planes, is given by

- +{W1 Wa Ws T (3.26)

-~ LIwllp w5 Twl,

Consider avector n = [n; n, ns]' , directed from the origin, and consider also
the particular 3D plane wyt; +w,t, + wst, = O that passes through the origin 0. The
vector n isaconstant signal vector if it liesin this 3D plane; that is, if it satisfies the
conditionw, n; +w,n, + wsn; = 0 or, egivaently, thecondition w>n = 0. For any
given values of w;, w, and wy, thereis an infinite number of different 3-tuples that
satisfy w:n = 0. Therefore, it isaways possible to find an infinite number of con-
stant signal vectors n and consequently thesignal sin(wt; + w,t, + wat,) isanLT
signal.

3.1.6 MD Uniplanar Signals
A signd x(t) isaMD uniplanar signal if it is zero everywhere outside of ahyper-
plane region Rg’:anel R" that was defined in equation (). That is, x(t) isaMD uni-
planar signal if
X(1)° 0, t1 R}jane (3.27)
We will find that uniplanar signals are encountered in the frequency domain repre-
sentation of LT signals.
Example14 3D Uniplanar Signals
| A 3D uniplanar sgnal is shown in Figure $2.24%. It satisfies
X(ty, 1y, 15)° 0, ti Ry (3.28)
| where
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M
plane

M
plane*

Equivaently, the signal has the region of support R
not generally constrained.

Itsvalueintheplaneis

M

A MD uniplanar signal isaMD plane waveif it is constant in the region R, ;e

shown in the following example.

as

Example1l5 MD Uniplanar Plane Waves

Consider aMD uniplanar plane wave signal that is defined as zero except in a par-
ticular MD plane where it is equal to the (possibly complex) constant z, . This signal
may therefore be written in terms of the unit impulse operator d; as

zod (Nw't = | (3.29)

Thisisasignal that liesin the plane, as shown in Figure $2.24%, and which gener-
aly may equal any complex constant value z, in the plane.
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