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CHAPTER 3 Linear Trajectory and Plane 
Wave 3D Signals

3.1 LINEAR TRAJECTORY MD SIGNALS

Linear Trajectory (LT) signals are an especially important class of MD signals. 
They occur in many kinds of signal processing systems, including television, radar, 
and seismic signal processing.

A MD signal  is a Linear Trajectory (LT) signal if there exists a constant 
MD vector  such that the directional derivative  is zero 
everywhere in the domain of the signal}.

This definition implies that a LT signal  is constant along all MD lines having 
the same direction as the MD vector n . In the 3D case, for example, a LT signal is 
constant along all straight lines having a particular direction n. We shall therefore 
refer to the unit vector in the direction of n as the constant signal vector . The direc-
tion of n is the constant signal direction of the LT signal. The signal 

, that was considered in Example 16, is an example of a 2D 
LT signal because it has constant value along all 2D lines having direction 

 corresponding to the constant signal vector
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3.1.1 The 3D Linear Trajectory Signal

Suppose that a 3D LT signal  has a direction of constant intensity given by n 
and that we consider any two parallel 3D planes    and  
having the normal n, as shown in Figure (3.1).  Then it follows that the value of the 
signal  at its intersection with the plane  is exactly the same as the value 
of  at its intersection with the plane .  3D LT signals  can be consid-
ered as propogating without variation in the direction n, as shown in Figure (3.1).

FIGURE  3.1 Intersections of A Linear Trajectory (LT) Signal Having the 
Constant Intensity Vector n With Parallel Planes   and 

 Having Normals n

Intersections of LT Signals In Planes Parallel To An Axis

We now want to derive a relationship between the intersections of  with 
parallel planes that are normal to one of the axes.

Consider two parallel planes,  and , having a normal  that points 
along the  axis and therefore is given by , as shown in Figure (3.2).  
Let  be a LT signal, where the constant signal vector  is generally differ-
ent from , and denote the 3-tuple  by the point A in the plane , as 
shown in Figure (3.2).  Further, let  the 3-tuple B  lie in the plane  such that the 
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line AB is in the direction of the constant signal vector , as shown in Figure (3.2), 
implying that the signal at B has the same value as the signal at A.

FIGURE  3.2 A Rectangular Region Enclosing a 3D LT Signal

Consider the 3D rectangle [A;B] in Figure (3.2) and let the two planes  and 
 be perpendicular distance  apart, as shown.  Then it follows directly from 

the geometry of this rectangle in Figure (3.2) that the 3-tuple B is given by

n
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(3.2)

However, the signal has the same value at B as at A, so  and there-
fore, from equation (3.2),

(3.3)

which is the required result.

Equation (3.3) implies that, if we slice the LT signal in successive planes that are 
normal to the  axis and  apart, then the signals in each of these successive planes 
are identical except that they undergo a shift from plane to plane that is given by 

 in the direction of the  axis and  in the direction of the 
 axis. This corresponds to the 2D shift vector  where

(3.4)

where AC and CG are shown.

The Spatio-Temporal Case: If  is the temporal dimension and  and  are 
spatial dimensions, then  describes the relative spatial displacement of the LT image 
signal over any time interval .  It follows that the 2D spatial velocity vector is 
given by

(3.5)

This expression for the 2D spatial velocity vector in the 2D dynamic image is a use-
ful practical measurement when designing 3D image-enhancement algorithms for 3D 
filters.

 Example 10    A Typical 3D LT Movie Image Signal

Consider part of a typical continuous-domain movie scene in which an object signal 
 moves with uniform velocity across the movie screen at an angle of 30 

degrees to the horizontal in the NE direction, as shown in Figure (3.3) , and suppose 
that the object covers a distance on the screen equal to 20 cm in 5 seconds.

Find the 2D spatial shift  and the constant signal direction n of the 3D LT signal.
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We have, . and . So, in equation ( ), 

(3.6)

and

(3.7)

We note that the first two components of the vector n tells us the horizontal dis-
tance and vertical distance moved by the signal object in time . If we normalize  to 
one second, then

(3.8)

Continuing this example by assuming that the 3D movie signal is uniformly sam-
pled at 30 pixels/cm. along the  and  axes and at 1 frame every 1/60 second on the 
time axis  , we arrive at the uniformly sampled version , of this image. 
The corresponding direction of a constant signal vector in this discrete integer 3-tuple 
domain is given by the direction of the vector

(3.9)

or, dividing each element of n by 60,

(3.10)

Of course, we cannot expect that this direction n in  will cause sample points in 
successive temporal frames to coincide with -shifted versions of the sampled image 

.  These sample points do, however, correspond to rectangular samples 
of -shifted versions of the continuous-domain LT image .

FIGURE  3.3 An Example Of A LT Television Signal in 
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3.1.2 MD PLANE WAVE SIGNALS

Plane wave signals are very common. In the 2D case, plane waves  are 
often encountered in applications where a linear array of detectors measures the arrival 
of a signal from a distant source or target. Typical applications include seismic wave 
detection systems, linear array radio and sonar frequency directional detectors in radar 
and navigation systems, baseline array detector systems for astronomical imaging. The 
applications for 3D plane wave detection and enhancement are becoming more impor-
tant as the processing speed and memory storage capability of modern signal process-
ing systems is able to handle the large quantities of data. In the 3D case, seismic 
wavefront detection is now important, because it allows the direction of the seismic 
source to be more accurately determined than does 2D seismic processing. The poten-
tial for employing 3D plane waves in the compression, enhancement and transmission 
of television signals is of also of growing interest.

 The MD Plane

We define a constant vector  and consider the 
vectors  that satisfy the equation

(3.11)

where l is a scalar constant. The region in  where the above equation is satisfied 
is defined as the MD plane and denoted . The vector d is defined as the normal 
to the plane . If the length  is unity, then d is referred to as the unit normal. 
One may express the functional dependence of this planar region on d and l by writing 
the region as  where

(3.12)
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(3.13)

Let d be a unit normal vector. Then the length l is the projection of t in the direc-
tion of d . In the 3D case, l has the geometric interpretation that it is the shortest dis-
tance between the 3D plane and the origin, as shown in Figure ?.??.

Plane Wave Signals 

By considering all possible values of l in the interval , one generates an 
infinite number of MD planes having the same normal d.

The MD Plane Wave Signal

 A MD signal  is a MD plane wave if there exists a MD vector d such that, for 
every l,  is constant everywhere in each of the planes .

For a particular d, the constant value of  in each plane is only a function of l 
and may be written as . The plane wave signal can therefore be described in 
the alternate form

(3.14)

The unit vector in parallel with d is defined as the propagation vector of the MD 
wave and the direction of d is defined as the direction of propagation of the MD 
plane wave.

3.1.3 3D Plane Wave Signals

Two of the infinite number of 3D planes having the normal d are shown in Figure 
2.22 . The signal  is constant in each of these planes, having value 

 in the plane  and value  in the plane 
, as shown in the diagram. These planes have shortest distances  and 

 from the origin, respectively, as shown in Fig.2.??.

In general, there is a continuum of such planes, one for each l in . Over this 
range of l , the function  describes the variation in the value of the plane 
wave as a function of the shortest distance of the 3D plane from the origin. Clearly, a 
3D plane wave is completely described by the function  and the vector d. It 
may be written as

(3.15)
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 Example 11    A 3D Plane Wave Gate Signal

Consider the 3D plane wave signal  defined by

(3.16)

(3.17)

where  is the previously defined 1D unit step function given by 
. The corresponding 3D signal  is shown 

in Figure 2.23 from which it is observed that the signal is essentially a 3D unit ampli-
tude pulse with a planar wavefront that is perpendicular distance  from the origin. 
The pulse has thickness  and direction of propagation . This exam-
ple is typical of the envelope of a reflected radar or sonar pulse that is received on a 2D 
spatial array of detectors in  and  as a function of time . Later, we shall be inter-
ested in signal processing algorithms that can selectively enhance such pulses on the 
basis of their direction d.

 Example 12     3D Plane Wave Signals from 1D Signals by the Rotation of Coor-
dinates

Consider the 1D signal , as shown in Figure 2.??. This 1D sig-
nal may be used to describe the 3D plane wave signal

(3.18)

This 3D plane wave  has the direction of propagation given by the unit 
vector  which points along the  axis. The constant signal planes are 
therefore perpendicular to the  axis. Using the previous notation for a plane in , 
such planes may be written as . The signal has 
value  everywhere in the planes  , as shown in Figure 2.??. Con-
sider now the rotation of the coordinate system t by means of the rotations  and then 

 , as shown in Figure 2.??, resulting in the new coordinate system u where

(3.19)

Let us find the direction of propagation  of the plane wave in the new rotated 
coordinate system u. In the coordinate system t, the unit propagation vector 

 and

(3.20)

Substituting for d and using the expression in Example 17? in the above equation 
gives 
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(3.21)

We have determined the propagation vector of the plane wave in the new coordi-
nate system u. The variation of the signal in the direction of  is unaltered by the 
rotation and remains as , where l is the distance from the signal plane to the 
origin in the new coordinate system. The equation of the plane wave in the new coor-
dinate system is .

 Example 13      A 3D Impulse Plane Wave

As a special case of the 3D Plane Wave signal, consider the signal

(3.22)

where  is the 1D unit impulse function. The signal  is zero every-
where outside of the plane . Everywhere inside the plane 

, the signal has infinite magnitude, as shown in Figure 2.24. Find the 3D 
integral of this signal in a 3D volume that completely encloses the plane 

. ( Hint: refer back to the definition of the 1D impulse function and con-
sider first the 3D integral in a finite size box that encloses some finite area A of the 
plane.)

3.1.4 Plane Waves as a Subset of LT Signals

Consider the general MD plane waves  and, in par-
ticular, consider the MD plane  that passes through the origin 0. Further, let n 
be a MD vector that is directed out from the origin 0 such that it lies in this plane; that 
is, such that . Any such vector n is a constant signal intensity vector and 
therefore the general MD plane wave signal is a special case of a LT MD signal. 
For N>1 it is possible to find an infinite number of constant signal unit vectors n that 
satisfy  . For example, in the case of 3D Plane Waves, there is clearly an 
infinite number of constant signal unit vectors n that lie in the plane, each pointing in a 
different direction, as shown in Figure 2.22.

3.1.5 A 3D Sinusoidal Plane Wave

Consider the 3D signal

(3.23)
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This signal is constant and equal to  in the infinite number of parallel 3D 
planes given by

(3.24)

Therefore, the signal  is a 3D plane wave for which

(3.25)

This plane wave may therefore be written as  where the 3D direction of 
the propagation unit vector d , which is normal to the 3D planes, is given by

(3.26)

Consider a vector , directed from the origin, and consider also 
the particular 3D plane  that passes through the origin 0. The 
vector n is a constant signal vector if it lies in this 3D plane; that is, if it satisfies the 
condition  or, eqivalently, the condition . For any 
given values of , there is an infinite number of different 3-tuples that 
satisfy . Therefore, it is always possible to find an infinite number of con-
stant signal vectors n and consequently the signal  is an LT 
signal.

3.1.6 MD Uniplanar Signals

A signal  is a MD uniplanar signal if it is zero everywhere outside of a hyper-
plane region  that was defined in equation ( ). That is,  is a MD uni-
planar signal if

(3.27)

We will find that uniplanar signals are encountered in the frequency domain repre-
sentation of LT signals.

 Example 14     3D Uniplanar Signals

A 3D uniplanar signal is shown in Figure $2.24$. It satisfies

(3.28)
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Equivalently, the signal has the region of support . Its value in the plane is 
not generally constrained.

A MD uniplanar signal is a MD plane wave if it is constant in the region , as 
shown in the following example.

 Example 15      MD Uniplanar Plane Waves

Consider a MD uniplanar plane wave signal that is defined as zero except in a par-
ticular MD plane where it is equal to the (possibly complex) constant  . This signal 
may therefore be written in terms of the unit impulse operator  as

(3.29)

This is a signal that lies in the plane, as shown in Figure $2.24$, and which gener-
ally may equal any complex constant value  in the plane.

Rplane
M t1 t2 t3|a1t1 a2t2 a3t3+ +, , l={ }≡

Rplane
M

Rplane
M

zo
δ1

zoδ1 l( )|ωT t l=

zo



File name: chap3a.doc LINEAR TRAJECTORY MD SIGNALS January 29, 2002 8:36 pm

64 Copyright L.T. Bruton  MD SIGNAL PROCESSING


