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CHAPTER 5

The Fourier Series

So far, MD signals x(t) have only been considered over their domain dmnt. In
this chapter, it is shown that signals may usefully be described in another domain; the
frequency domain. The methods of Fourier analysis are used to transform a signal
from dmn t to the frequency domain. It will be shown that signals and signal process-
ing systems may be designed in terms of frequency domain parameters and frequency
domain criteria.

In Section 3.1, the Fourier Series of 1D periodic signalsis introduced, beginning
with the continuous-domain case for which it is shown that such signals may be com-
pletely represented as the sum of 1D sinusoids. The Exponential Form of the Fourier
Series is defined and employed to show that this class of signals may be represented
as asum of periodic exponential signals, known as phasors. By means of the phasor
representation, the frequency domain is introduced, including the concept of the spec-
trum of asignal. The relationship between the power spectrum and the average power
of 1D periodic continuous domain signal is established. All of these results are
extended, in a natural way, to the discrete domain.

In Section 3.2, the Fourier Seriesis extended to include MD periodic signals, with
emphasis on discrete-domain signals. The concepts of harmonics, phasors and the fre-
guency-domain are introduced for the case of MD signals. It is shown that MD peri-
odic signals may be represented as the sum of MD phasors.
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In Section 3.3, the MD Fourier Transform is introduced for the purpose of
describing non-periodic continuous-domain MD signalsin the frequency domain. The
MD version of Parseval's Theorem is introduced and used to define the MD Energy
Density Spectrum. The connection between the energy representations of aMD signal
in the two domains, dmn t and dmn w , is established.

The Linear Transformation Property of the MD Fourier Transform is developed
and used to establish relationships between operations on the signal in dmn t and cor-
responding operationsin the frequency domain dmn w . For example, such operations
as MD scalings, rotations and shifts are considered in both domains. Some of the
symmetry properties of MD signals are also considered in both domains

5.1 THE 1D FOURIER SERIES OF CONTINUOUS-DOMAIN

SIGNALS

The Fourier Series representation of asignal is defined differently for the continuous-
domain and the discrete-domain cases. It will be shown that the Fourier Series allows
periodic signals to be exactly represented everywhere on the real line, whereas non-
periodic signals may only be represented on some finite interval on thereal line. In
spite of this restriction, the Fourier Series forms the basis for development of the Dis-
crete Fourier Transform and other important discrete transform methods.

Consider areal amplitude-bounded continuous domain 1D periodic signal x°(t) hav-
ing periodicity Tp- (The superscript ° isused throughout to indicate that a signal or
function is defined to be periodic over its domain). Thus, x°(t) = x°(t— er) ,

"r1 z'. The trigonometric Fourier series representation of such asignal is given by
k=¥

X°(t) = ag+ é [a,cos(2pkft) +bysin(2pkfyt)], ki N* (5.1)
k=1

THE TRIGONOMETRIC FOURIER SERIES

where a,, a, and b, arereal constants and

fO

1
o 5.2
o T (52)

We refer to fp as the fundamental frequency of the signal x°(t) . The Fourier
Series implies that a 1D continuous-time periodic signal may be exactly represented
by the (possibly infinite) sum of cosinusoidal signals a, cos(2p kfpt) and sinusoidal
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signals b,sin(2pkft) . Thisequivaenceisillustrated in Figure (5.1) where the cosi-
nusoidal termsare shown for k = 0, 1, 2 and the sinusoidal termsfor k = 1, 2.

FIGURE 5.1

Representation of a 1D Signal as the Sum of its Fourier Components

(insert diagran here)

For any particular x°(t), there exists aunique set of real constantsa,, a, and b,,
known as thetrigonometric Fourier coefficientsof x°(t), that determines the
amplitudes of the sinusoidal and cosinusoidal termsin the Fourier Series representa-
tion. Theterms a,cos(2p kfpt) and b,sin(2p kfpt) are referred to as the harmonics
of the periodic signal x°(t) . The harmonics have frequencies kfp that are uniformly
spaced at integer multiplesk of the fundamental frequency fp . Taken asaset, werefer
to the harmonics as the frequency spectrum of x°(t).

It is possible (see Problem 3.??) to find the trigonometric Fourier coefficients
a,, a, and b, asfunctions of x°(t) by integrating over one period of t, the three
terms, x°(t), X(t)cos(2pkf,t) and X(t)sin(2pkf,t) . Thisleadsdirectly to the
following expressions for the Fourier Series coefficients

T, 02
a, = 1_1— (‘) x°(t)dt (5.3)
p—Tpnz
T, 2
— 1 b o

ay = >. O Xx°(t) cos(2pkf,t)dt (5.4)

—Tp o2

and
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T, 2

I TNt
b= 5= @ x°()sin(pkfgtydt, (kT N 9

“T,2

Convergence of the Fourier Series

It turns out that there are certain mathematical constraints on x° (t) that must be
met for the Fourier Seriesin (5.1) to be valid everywherein t. The right side of equa-
tion (5.1) convergesto x°(t) , the left side, for all amplitude-bounded x°(t) at all
points where x°(t) is continuous(-valued) provided that the number of amplitude dis-
continuitiesisfinite. At points t, on t where x°(t) is not continuous(-valued), the
Fourier Series convergesto the average of theright and |eft hand limits of x°(t) ; that
is, to the average of x°(t,, and x°(t;) .

From a practical point of view, all physically observable periodic signals possess
avalid Fourier series; that is, one that converges everywherein t. Thisis because al
physical signals must have afinite number of amplitude discontinuities. However,
signals that have an infinite number of such discontinuities can be constructed mathe-
matically (see Problem 3.77).

5.1.1 The Exponential Form of the Fourier Series

Writing the k th sinusoidal and cosinusoidal harmonics in equation () in terms of
exponentials, according to equations ( ), gives

]2pkft ijHt

Pl [

]2pkft 12pkft
]} (5.6)

x(t)—a0+a[

=1

Note that we have chosen to express real sinusoidal and cosinusoidal signals as
complex exponential signals. Thisstep isvery important and iswidely used. It leads
to amore straightforward approach to the analysis of signal processing systems than
if cosine and sineterms are retained. (The primary reason for the simplification is that
exponential functions remain as exponential functions when multiplied together,
allowing more simple expressions than the complicated trigonometric identities that
are required to simplify expressions containing products of sine and cosine terms).

There are two types of exponential termsin the above expression. First, the term
exp(j2p kfpt) isaperiodic continuous time complex 1D signal of the type considered
insection 2.?7?. Thistermis shown in Figure 3.2 asa complex number that rotates,
asafunction of t, on acircleof unit radiusin the anti-clockwise direction at a
uniform rate of k revolutions per period T = 1 nfp.
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FIGURE 5.2

The Clockwise-Rotating and Anti-clockwise Roating 1D Phasors

(insert here)

The second type of exponential termis  exp(—j 2pkf t), whichisasimilar com-
plex number except that it rotates at the same rate but i nthe clockwise dir ection, also
shown in Figure (5.2). These rotating exponentials are referred to as phasors.

The phasor exp(j 2pkf,t) , having anticlockwise rotation, is said to have positive
frequency kfp and the phasor exp((—j)2p kfpt, having clockwise rotation, is said to
have negative frequency —kf,. Grouping the positive and negative frequency phasor
termsin equation (5.6) gives

k=¥
o rl : j2pkfyt, 1 . —j2pkf,t -

(1) = 2+ @ [5@c—ibdE" ) + Sac+ b ) KT N )
k=1

The two termsinside the summation have imaginary components of opposite
signsthat cancel in the sum of these two terms; that is, the componentsin the direc-
tion of the imaginary axis of the phasors of positive and negative frequency are, for
all t and each k, in equal and opposite directions, asillustrated in Figure (5.3).

FIGURE 5.3

Cancellation of the Imaginary Parts of the Complex Phasors

(insert here)
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Defining
X0 3(a,—jby), (kT z*
K 5@=iby). (k127 (5.8)
equation (5.7) simplifies to the following alternate form of the Fourier Series

k=¥

o j2pkf t
() = g %e& "
k=¥

ki zt (5.9)

THE EXPONENTIAL FOURIER SERIES
where

X, ° a, (5.10)

Note that the index of summation k is extended over all of theintegers, including
the negative integers. Equation (5.9) isthe Exponential Fourier series. Note that the
coefficients X,, k * 1, are generally complex whereas the coefficients of the Trigono-
metric form of the Fourier Seriesarereal.

It iseasily shown from equations(5.8), (5.9) and(5.10) , (see Problem 3.?7?) , that
the coefficients of the Exponential Fourier Series may be expressed intermsof x°(t)
as

T, 2

P
—j 2pkf ~
xkoTi oxwe " “dt, (k1 ZY) (5.11)
p

T, 2

The set of coefficients X, in equations (5.10) and (5.11), over all k , isreferred to
asthe spectrum of x°(t) . These coefficients X, are often written in the polar form

M, exp(ja,)
where
M, = X and g, = arg(X,) (5.12)
Inthis case, the real discrete function M, is referred to as the magnitudeline
spectrum of x°(t) and thereal discrete function g, asthe phase spectrum of x°(t).
The relationships between signals and their corresponding spectra are of fundamental

importance in signal processing.

So far, we have discussed the concept of afrequency spectrum of a narrow class
of signals; that is, the continuous-domain 1D periodic signals. However, the concept
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extendsto MD signals and also to discrete-domain and mixed-domain signals, as well
asto non-periodic signals.

Many signal processing systems are designed on the basis of frequency domain
criteria, including electronic filter circuits and filter algorithms, as well asimage pro-
cessing systems, control systems and adaptive systems. It is therefore worthwhile to
explore further the concept of the frequency domain of asignal.

Example 16 The 1D Continuous-Time Periodic Gate Signal g°(t)
Consider the continuous 1D function g(t) in Figure 3.4 having period-

icity T,, pulse duration 2T, and pulse amplitude Ay, which is often referred
to asthe gate function.

FIGURE 5.4 The 1D Continuous-Time Gate Signal g°(t)

(insert here)

Thistype of waveform is very common in electronic engineering sys-
tems. It follows directly from equation (5.11) that the spectrum of this signal
G, isgiven by
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To
Gk = Tl OA\Oe

p

—j2pkt aT,

dt

_pk
AO j2pktqu —j2pktnTp
“pk 2]

Ay
:5—[sm(2ka00Tp)]

2R ToET,

= 2pkT,aTl
20T, 57 LS (2PKTo oTy)]

(5.13)

Substituting the fundamental radian frequency W, ° _—I_l— into this equa-

tion gives the spectrum of g°(t) as p
To . -
G, = @smc(kpro), ki z* (5.14)
P

In this particular example, all of the G, are real. Thiswill not generally be the
case but it does allow us to sketch the complete spectrum in a single diagram for this
particular example, as shown in Figure (5.5). The positive values of G, correspond to
frequency regions where the phase spectrum ¢, is zero and the negative values of G
correspond to frequency regions where g, isequal to p.

FIGURE 5.5 The Spectrum of the Gate Signal g°(t)
(insert here)
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5.1.2

Envelope of the Spectrum:

The spectrum G, of g°(t) possesses asinc function envelope having its first pos-
itive zero crossing where kw, T, = p; that is, where

__h

k = vﬁ, (5.15)

which, in general, need not correspond to an integer value of k. Subsequent zero
crossings of thesinc function envelope of G, are at integer multiples of the frequency
kwID radiansg/unit of t . Clearly, the zero crossings of the sinc envelope are not a
function of the period T, or of the pulse amplitude A, , but only of the pulse duration
. The width of the envelopeisin fact inversely proportional to the pulse duration 2T,,.
The width of the envelope of the spectrum, often qualitatively referred to as the band-
width of g°(t), increases as the pulse width becomes narrower.

Amplitude of the Spectrum:

Consider now the amplitude of the sinc envelope, which is proportional to
2A0To
Tp
and therefore to pulse duration 2T, . Clearly, the amplitude of the sinc envelope
decreases as the duration 2T, is decreased.

Line Density of the Spectrum:

Consider the effect of increasing the period T, with fixed pulse duration 2T, and
fixed pulse amplitude A,. The amplitude of the envelope decreases in inverse propor-
tion, without affecting its basic shape. The frequency distance between the lines (den-
sity of the harmonics) of the spectrum decreases and is equal to w p = 2p AT, which
is the fundamental periodic frequency. The line spectrum becomes more dense as the
period T increases.

Some Properties of the 1D Fourier Series

It follows from equation (5.11) that, in general, the line spectrum M, © [X,| satis-
fiesM, ° M_, . Thatis, the magnitude spectrum isan even function of k. It also fol-
lows from equation (5.11) that g, = q_, ; thatis, the phase spectrum isan odd
function of k. Equivalently, X, and X_, arerelated via complex conjugation; that is,

X = XX, "kl z! (5.16)

According to equation ( 2.?7??) , the power of a periodic continuous domain real
1D signal is given by

— o (+)2
p(Y) = (1) 51
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Clearly,the power p(t) variesperiodically with t. We now introduce the concept
of the average power p,, of aperiodic signal which isthe average of p(t) over any
integer number of periodsin t; clearly, p,, isconstant. Thus

T, 22 T, 2 K= ¥ 2
N o4\ 2 _ N o jkw,t
Pa® QX (t)dt = O[ a xe ”} ct (5.18)
T, o2 T bk =—¥

Consider now the evaluation of the above integrand;

K= ¥ 2 k,=¥ k, = ¥
o jkwpt _ o o]
a Xe = ava (5.19)
k=—¥ k, =—¥ Kk,=-¥
where
jkwpt
I, =€ (5.20)
Then
_ jkywpt jkowpt jky+ kwpt
L le, = Xy, Xy, = X %€ (5.21)

Multiplying out the individual termsin the double sum of equation (5.19) and sub-
stituting eguation (5.21) gives

T2 k1:¥ k2:¥

P = @ & A Nkt

—Tn2k1: —¥ kz =¥

ki=¥ k=¥ T2
_ o [o] N jklwpt jkzwpt
= a a Xkl)(k2 Oe e dt
ky=—¥k,= ¥ -T2 (5.22)

Consider the integral in the above equation. It is easily shown that

TR
N ejklwptejkzwpt

0, " Ky, ky[ky * —k,
1" Ky ko|ky= —k,

dt = (5.23)

-T2
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Functions such as exp(jk,wpt) and exp(jk,w,t) , having the above property
under integration , are said to be orthogonal over theinterval [T, 02, T, 2] .
Orthogonal functions play an important rolein signal processing. The reason for their
importance isillustrated here because the orthogonality of exp(jk;wyt) and
exp(jkywpt) in equation (5.23) allows equation (5.22) to be simplified to the follow-
ing fundamentally important and simple expression for the power of a periodic signal
in terms of its magnitude spectrum

k=y¢ | k=¥ !

[o] o 2
Pav(t) = A XXk = aA Xl (5.24)
k=-¥ k=-¥

That is, the average power of a continuous time periodic signal X°(t) can be
obtained by adding together the square of the magnitudes of the individual termsin
the magnitude spectrum. It is easily shown that the average power of each red kth
harmonic

Xexp(jkwpt) +X_exp((—j) kw,t) (5.25)

isgiven by
Pay, = |Xk|2+ |X—k|2 = 2|X|<|2 (5.26)

This simple result follows from the orthogonality of the individual termsin the
Fourier series. The line spectrum |Xk|Z isreferred to as the power spectrum of
x°(t) .

Other discrete transforms are used in signal processing, not all of which have
orthogonal basis functions and, in such cases, it is generally not possible to infer an
exact and simple relationship between the transform domain coeffcients and the
power of the signal in the domain t. The reader will encounter such transformsin
Chapter 4.

5.2 The 1D Fourier Series of Discrete Domain Periodic Signals

Consider a discrete domain real periodic 1D signal x°(nT), where
n={%,-3,-2,-1,0,1,2,3, %}, T1 R, andwherethissignal isdefined to have
periodicity N,T,N T N*,as shown in Fig.(5.6).

FIGURE 5.6 A Real Discrete-Domain Periodic Signal x°(nT)
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(insert here)

Thissignal istherefore defined on uniform distances
n={%,-3,-2,-1,0,1,2,3, %}, T1 R' and
x°(nT) = x°(nNT=rN,T), " r1 z'.The periodic radian frequency is

W, = 2pa(N,T) (5.27)
The Exponential Fourier series representation of x°(nT) isdefeined as

N,-1

x(nT) = Q X(K

k=0

jkwpnT
e (5.28)

EXPONENTIAL FOURIER SERIES OF A DISCRETE DOMAIN SIGNAL

It can be shown, using the orthogonality of exponential signals under summation
(see Problem 3.7?), that the generally complex and periodic coefficients X(k) are
given by

Np -1
o —j kwpnT

a x°(nTe (5.29)
Ph=o

|~

X(K) =

Z

The coefficients X(k) have periodicity N, in k . Equation (5.29) impliesthat the
signal x°(nT) may be expressed as aweighted sum of N, discrete domain complex
periodic exponential harmonic functions of the form exp(jkw pnT) , which for each
k , isadiscrete phasor as shown in Fig.3.6. This representation of a discrete phasor is
aset of pointsin the complex plane where the points are equidistant around the unit
circle, rotating clockwise as afunction of n. For each periodic increase N T inn, this
phasor rotates by —2pk radians (that is, by k revolutions of the origin).
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FIGURE 5.7 The Discrete-Domain Phasor exp(j kwpnT)
Complex Magnitude and Phase Spectra
The set of complex coefficients X(k) isreferred to as the discrete complex fre-
quency spectrum of the discrete domain signal X°(n). It followsthat a uniformly
sampled periodic signal x°(n) may berepresented by the sum of N distinct
harmonic complex phasors X(k)exp (- kvupn) . The magnitude (or line) spectrum
M (k) and the phase spectrum q(k) are given by
M(k) = IX(K)I (5.30)
| and
a(k) = argX(k)| (5.31)
and the discrete power spectrum is defined as
2
IX(K)| (5.32)
DISCRETE POWER SPECTRUM
Average Power of Discrete Domain Periodic Signals:
The relationship between the average power in areal discrete domain 1D periodic
sequence and the coefficients of its discrete Fourier seriesis similar to the continuous
| domain case. The average power p,, of adiscrete domain periodic sequence is
defined as
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N-1 N-1
° [e] _ [} o 2
Pav® A pP(n) = A x°(n) (5.33)
n=0 n=0

Substituting the discrete exponential Fourier seriesfor X(n) gives
et T |
-l
P.v = A [a X(k)e " } (5.34)
n=0Lk=0

Squaring the term in the brackets [ ] and using the following orthogonality condi-
tion for summed exponentials

ot —jkw,n jkwn LKy = K
a X(k)e " X(k)e * = (5.35)
0,k t =k,
k=0
leads directly to
N-1 N-1
[o] [e} 2
Pav = @ X(KX(K) = g X(K)I (5.36)
k=0 k=0

Thus, it isaso true in the discrete case that the total average power in a periodic
signal isthe sum of the squares of the magnitude spectrum. The term

X+ X (R
is the average power of the individual k th real discrete harmonic; thus, the total

average power is the sum of the average powers associated with each discrete peri-
odic harmonic sequence.

Example17 A Periodic Discrete Domain 1D Gate Signal

Consider a discrete domain periodic signal g(nT) asshownin Figure (5.8) and
consisting of samples of the 1D periodic gate signal that was considered in Example
(16).

FIGURE 5.8 A Disrete-Domain Periodic 1D Gate Signal
(insert here)
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Thesignal g°(nT) has periodicity N,T and the sampled gate pulses have ampli-
tude A, and duration (2N + 1)T , asshown. The signal isillustrated in Figure (5.8)
for the "highly sampled' case where N, © 100, N, © 10, T° 0.5. (We make no attempt
in this example to quantify the concept of a'high' sample rate. The reader will have to
wait until the Sampling Theorem is considered in Chapter 4.) In this case,

Np» Ng» 1, implying that each gate pul se consists of many samples and that the
period is much greater that the durations of the pulses. According to equation (), the
exponential Fourier Series G(k) isgiven by

N, -1 " n=N, »
G(K) = é go(nT)e ¥ = é Age’ "enT (5.37)
n=0 n=-Ng
Now, it is shown in Appendix A tha
- S‘”[M}
é g —= = - (5.38)

S0

Substituting equation (5.38) into equation (5.37), with g = kw,T, gives

PN+ Dkw T i [(2No+ pkT
A09n|: 2 ] 0 I: N ] N 1
Gk) = — = — P (k1 Z7) (5.39)
Np sin l:kW Ti| Np sm[w}
2 N,

Thisistherequired result for the line spectrum é( k) andisshown in Figure 3.9.

FIGURE 5.9 Spectrum é(k) of the Discrete-Domain Periodci 1D Gate Signal g(n)
(insert here)
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First, itisobserved that G(k) isdefined on the entire set of integersin Z L
Observethat G(k) is periodic in k with periodicity 1 eN, . This makes good sense
because the envel ope of the line spectrum is expected to repeat at an interval that is
determined by the repetition period N, of the envelope of the signal g(nT) . The
envelope of the main lobe of the line spectrum G(Kk) crosseszeroat k = 1 aN,
which again makes good sense because we expect the zero crossing to be determined
by the 'duration’ N, of the continuous domain version of the pulse. The distance
between the lines of the line spectrum G(k) isunity. The horizontal axis of thisline
spectrum can be cast in terms of radian frequency, rather than the index k of the har-
monic, simply by scaling the axis by 2p &T . This second scaled axisis aso indicated
in Figure (5.9) whereit is observed that the envelope of G(k) isperiodic at the
radian frequency 2p aN,T and the lines are spaced at intervals of 2p dT . The main
lobe of the envelope then crosses zero at 2p N T radians, which corresponds with
the zero crossing of the main lobe of the spectrum of the continuous domain pulse
considered in Example 3.1.

It may be shown that the line spectrum G(k) of adiscrete domain periodic signal
x°(nT) is

« defined on lines at the radian frequency intervals 2p &l
* hasan envelope that has periodicity 2p TN,

» the shape of the envelope, for the 'highly sampled' case, is similar to that of the spec-
trum of the corresponding continuous domain signal.

In general, the coefficients G(k) of the discrete Fourier seriesexist onall k1 z*
and are periodic with periodicity N, , where N, isthe periodicity of x°(nT).

Repersentation of Nonperiodic Signal x(t) on a Finite Interval by Periodic
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Extension:

It is possible to employ the Fourier Series to represent a nonperiodic finite-dura-
tion signal x(t) having aregion of support on afiniteinterval [C, L] in dmnt. This
may be done by choosing a periodic signal x°(t) having a period equal to L and such
that it is equal to the nonperiodic signal x(t) over the period [0, L] . That is, by
choosing x°(t) sothat

x°(t) = x(1),0£tEL (5.40)

Thefunction x°(nT) isthen referred to as the periodic extension of the nonperi-
odicsignal x(t) .

Thistechnique for finding the frequency domain representation of a nonperiodic
signal by periodic extension can and often does lead to significant practical problems.
Unlessthe signal is of shorter duration than L, it istruncated to length L and there
may then exist artificial edge discontinuities at the edges of theinterval [C,L],as
shown in Figure(5.10).

FIGURE 5.10 Representation of a Signal on a Finite Interval

(insert here)

The assumption that x(t) equalsits periodic extension x°(t) isthen no longer
valid. We shall later find out that these edge effects are a most troublesome limitation
of the Fourier Series approach that also apply to the Fourier Transform of discrete
domain signals.

5.3 THE MULTIDIMENSIONAL FOURIER SERIES

The Fourier series representation of MD signalsis basically a straightforward
extension of the 1D case. We will leave the continuous-domain MD case to the exer-
cises at the end of this chapter and consider here only the discrete domain MD case.

Consider the discrete-domain MD periodic signal that is defined on the domain of
integer M-tuples as follows
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(5.41)

X2(N1 Ty, NoTo, Ya, NgTy, Y2, Ny Tr) =

XN Ty =rNy T, Ty =Ny Ty, %, ngTg—rNgTg, Y, Ny Ty =N, T)

where, for each dimension d, the intersample distances are T4 and the period is
N4T4 with ny and N4 positive integer constants. Then, writing

n = {ny Ny Ng %, ng, ¥a,n,} (5.42)
and
k = {kl! k2! k31]/41 kdy ]/41 km} (543)

the discrete exponential Fourier series of x°(n) isgiven by

N, —1N, -1  N,-1 m
o] [¢] [¢] [
xM=a a®%a X(k)exp[ja kdwdnde] (5.44)
k,=0k,=0 k,=0 d=1
5.3.1 MD Complex Phasors and MD Harmonics
The MD complex exponential term
o
exp{j a kdwde} (5.45)
d=1

will be considered many times during the study of MD systems. It isadiscrete
domain periodic exponential MD phasor with MD periodicity N where

N© {Nj, Ny ¥, Ng, ¥, Ny} (5.46)

(The MD phasor is the theoretical input signal that is applied to aMD system in
order to calculate its steady state frequency response).

The set of complex MD discrete domain exponential Fourier series coefficients
X(Ky, Ky, ¥4, k) , Which we write as X(K) , is the frequency spectrum of the MD
discrete domain signal x°(n) and can be obtained from x°(n) according to the
expression
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3

Ny -1N, -1  Np-1
1

6 o
X(k) = —— Y.
() NN, A a7

- m
x°(n)exp {—j é kdwdnde} (5.47)
k =0k =0 Kk

d=1

3II mo

0

Inspection of the above equation reveal s that the spectrum X(k) has the same
MD periodicity as x°(n) ; that is, it has period N and therefore has periodicity N, in
each of itsdimensionsd = {1,2, 3 %, m}.

It followsthat a uniformly sampled periodic MD signal x°(n) may berepre-
sented by the sum , that isthe superposition of, (N;N,N;% N_) distinct har-
monic complex phasors, each of which hasthe general form

m

X(Ky, Ko, Kgy Y4, o) exp[j 3 il—pndkd] (5.48)

d
d=1

Thisisafundamemtally important result because it allows usto anticipate how we
might try to design MD systemsto spectrally filter (that is enhance) MD signals by
attempting to remove some of these harmonics. So far, we have not considered the
type of signal processing that would accomplish such frequency domain filtering.
Some additional mathematical tools are required. For example, the MD signals that
we wish to process are usually duration bounded and therefore non-periodic; we
clearly need some additional techniques to describe the frequency domain content of
such signals.

Example 18 The 2D Discrete-Domain Periodic Gate Function

We have previously considered the discrete-domain periodic 1D gate
function. Consider now the 2D version g°(h,, n,) showninFig.3.77107?,
which is defined to have integer duration N, inthedirection of n; and inte-
ger duration No, in the direction of n, , periodicities N,; and N, inthe
respective directions and amplitude A,, as shown.

FIGURE 5.11 The 2D Discrete-Domain Periodic Gate Function g°(n,, n,)
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According to equation (5.44), the Fourier series of this discrete domain
signal isgiven by

N1 1N2—1
Glkyk) = @ A & (n)expe——pklnlj pkznzﬂ
k,=0k,= 0
(5.49)

NOIDZ N02n2 2
- 2 2 &; <P 0
= a Aoexp knlg a AOEXpé_JN_OZanZra

k, = —Ng; =2 Kk, = =Ng, 22

Using the result in Appendix A to evaluate the two summationsin the
above equation gives

aesmaéZNOl + 1)pk1Tooa aéZNOZ + 1) pk; T
A, & N g;
G(ky ky) = & Nox -9 No ; :
(kakd) = ¢ A N T
o d sin@ +C sgn%& 20 +
e eNplg age eNplg g

which isthe required result and is shown in Figure (5.12) for the particu-
lar numerical values

Ag® 50, T® 1N, © 5,Ng,° 10, N, © 50 (5.51)

FIGURE 5.12 The 2D Spectrum G(K;, k,) of the 2D Discrete-Domain Gate Signal g°(n,, n,)

(insert here)
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