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CHAPTER 6 The Fourier Transform

6.1 THE MD FOURIER TRANSFORM OF CONTINUOUS
DOMAIN SIGNALS

It has so far been established that continuous-time periodic MD signals x(t) may
be exactly represented by means of the MD Fourier Series and it has been shown that
such signals possess an interpretation in the frequency domain in terms of MD pha-
sors and MD harmonics. However, in many applications, MD signals are not periodic
and may not be expressed as a Fourier Series. For example, all finite duration MD sig-
nals are essentially nonperiodic.

The Fourier Transform may be used to obtain the frequency domain characteris-
tics of nonperiodic signals. In this section, the Fourier Transform of continuous-
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domain MD signalsisdescribed. Subsequently, it is shown that the Fourier Transform
of discrete-domain signals may be described in a similar way.

It will also be shown that the Fourier Transform can be used to determine the
energy distribution of aMD signal in the frequency domain; aresult that is fundamen-
tally useful for the design of many MD signal processing algorithms, including the
design of MD filters.

Consider an amplitude bounded continuous-domain MD signal x(t), t1 R™.
The MD Fourier Transform X(jw) of x(t) isdefined asfollows

jw 4 X(t)exp[—jw t]dt tsVa dt (6.1)
Xwe°o g% O O O Xexplw tldtd,dtsYad,

t,=—¥ =¥ t,=-¥ t =¥

Writing
t=¥ =¥ ot =¥t =¥t =¥
N\ — Y 1 Y Y Y
o) ) Ya O O ) (6.2)
t =¥ tn=—¥ tg=-¥ t,=-¥ t,=-¥
and
dt = dt,dt,dt;%a dt;¥a dt,, (6.3)

we may write equation (6.1) in the compact form

¥
X(iw)° ) X(t)exp(-j w' t)dt (6.4)

t=-¥

THE MD FOURIER TRANSFORM

The Inverse MD Fourier Transform is given by

¥
O X(w) exp(w't) dw 6.5)

m

X(t) = L
e

w= —¥

where
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¥ ¥ ¥ ¥

Y l Y Y Y

0 Ya ) 0 0 (6.6)
and

aw = dw,dw,dwg;% dw;Ya dw, (6.7)

The MD Fourier Transform operation on x(t) in equation (6.4) iswritten, for
brevity, as

Fm (6.8)

so that

X(iw) = F [x(t)] (6.9)

and, similarly, the MD Inverse Fourier Transform operation on X(jw) inequa-
tion (6.5) iswritten

F™L] (6.10)

so that

x(t) = F " [X(jw)] (6.11)
We shall write the MD transform pair as

x(t) U X(jw) (6.12)

It should be noted that the regions of integration for t and w in equations (6.3)
and (6.4) are the entire MD region R™ .

The MD integral in equation (6.4) must exist if X(jw) isto exist. A sufficient
condition for thisintegral to exist isthat x(t) be square integrable over R™, accord-
ing to the definition of square integrability in equation (???) ; that is, x(t) isafinite
energy signal. Periodic signals have infinite energy and therefore their Fourier Trans-
form does not exist. Infinite duration signals have a Fourier Transform if they are
finite energy signals.

Thefunction [X(jw)]| isreferred to as the magnitude spectrum and the function
arg X(jw) asthe phase spectrum of the signal x(t) . The magnitude and phase spec-
trapossess certain symmetries in the frequency domain dmn w that are described in
Section (6.4) under the discrete domain case.
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6.1.1 Parseval's Theorem for Continuous-Domain MD Signals

Parseval's Theorem is important because it provides a relationship between the
signal x(t) in the continuous domain and the distribution of the energy of the signal
in the frequency domain.

Consider apair of generally complex MD signals x(t) and y(t) . The energy of
thissignal pair at t = ¥ isobtained directly from equations ( ???) and ( ???) and is
given by

¥
E(¥) = c‘) x(t)y* (t)dt (6.13)
t=-¥

For acomplex MD signal pair, it may be shown from the definition of the MD
Fourier transform in equation (6.3) that

¥ ¥
E¥) = () x(y (et = (21

C‘) X{Gw)Y* (jw)dw (6.14)

m
t=-¥ w= ¥

The above expression isthe MD version of Parseval's Theorem for continuous-
domain signals. For asingle complex MD signal, equation (6.14) reduces to

¥ ¥
< 1 N .
E(¥) = Q) k®Fdt = —— ¢ X(w)l’dw (6.15)
t=—¥ (2 w = —¥
The real function
F(w)° [X(jw)P e(2p)™ (6.16)

isdefined asthe MD energy density spectrum of x(t) . It describes the disribu-
tion of the energy of x(t) over the frequency domain w .

6.1.2 Geometric Interpretation of Parseval's Theorem for the 2D and 3D Cases:

Consider, for example, a continuous-domain square-integrable 2D signal
X(ty,1,) , asillustrated in Figure (6.1) . The total energy of thesignal E(¥) , as
shownin Figure (6.2)., is obtained by integrating [x(t, t2)|‘ over the infinite-extent
planar region R*. Thetotal energy is, by definition, the volume under the surface
X(ty, t,)|* inFigure (6.2).
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FIGURE 6.1

A Continuous-Domain Square-Integrable Signal x(t,, t,)

(insert here)

FIGURE 6.2

Total Energy as Integral Under the 2D Surface X(ty,t,)

(insert here)

The Fourier Transform of x(t;, t,) isgenerally acomplex function, asillustrated
in Figure (6.3). The real energy density spectrum

F (W, Wp) © [X(jwy, jwo)[ 5(2p)° (6.17)

may be obtained asillustrated in Figure (6.4). The total energy of the signal may
be interpreted, according to the right side of equation (6.15), as the volume under the
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surface F (w, w,) in Figure (6.2). Thefunction F (w4, w,) istherefore appropri-
ately referred to as the energy density function because it describes the distribution of
signal energy throughout the 2D frequency plane. It is often possible to enhance 2D
signals by altering their energy density function F (w;, w,) in a specific and useful
way. We will return to this topic.

FIGURE 6.3

The 2D Fourier Transform

| FIGURE 6.4

The 2D Energy Density Spectrum F (W, W)

The 3D case is an obvious extension of the above 2D example. The total energy
E(¥ ) isthen interpreted astheintegral of [X(ty, to,t 3)| over the entire 3D region
R” and the energy density spectrum F (Wy, Wy, W3) |sthefrequency distribution of
thetotal energy E(¥) over the frequency vol ume R*®. Thevalue of the integral of
F (Wy, W,, W3) over somefinite volume W1 R® of the frequency spaceisthe energy
of the signal contained in that region of the 3D frequency space.

Example19 Example A 1D Continuous-Domain Gate Pulse g(t;)

Consider the 1D gate pulse g(t;) shownin Figure (6.5). Thisis anonperiodic
finite-energy signal, having amplitude A over theinterval -T, £ t; £ T, and zero
amplitude outside of thisinterval.
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FIGURE 6.5

A 1D Continuous-Domain Gate Signal g(t,)

Before finding the Fourier Transform G(jw,) and the energy density spectrum
F (w,), we note that the total energy E(¥) is easily obtained by means of the inte-
gral in equation (6.15) and is therefore given by

¥ ¥
E¢) = ) lo)fdy = ) Aldy = 2A"T, (6.18)

t, =¥ t, =¥
asillustrated in Figure (6.5) . The Fourier Transform of g(t;) isgiven by

¥ To
G(jw,) = é g(ty)exp(—jw,t,)dt; = (‘) Aexp(—jwyty)dty (6.19)
L=¥ t,=-T,

The above integral may be evaluated in a similar way to the calculation in Exam-
ple(25), leading directly to

G(jw) = 2ATysinc(w,Ty) (6.20)

so that the energy density spectrum is given by

GGw)?  2A’TYsinc(w,T,)]?
F(w,) = | (12p1)| - ol p( 1T0)] 6.21)

The Fourier Transform G(jw,) and the energy density spectrum F (w,) are
shownin Figure (6.6). Thetotal energy E(¥) isthe areaunder the curve F(w;) and
the shaded area corresponds to the energy in g(t,) thatisin thefrequency intervals
wy, £w, £w,,and -w,, £ w, £ -w,, . It should be noted that G(jw,) and F (w,)
are continuous functions of frequency w, . Thisis characteristic of finite energy sig-
nals.
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FIGURE 6.6

The 2D Energy Density Spectrum

It will be observed that the shape of F (w,) depends on the duration 2T, of the
pulse g(t,;) inacharacteristic way; if the duration of the pulse is reduced, by reduc-
ing 2T, then the total energy is also reduced in proportion to 2T, according to equa-
tion (6.18). The zero crossings of F (w,) are at integer multiples of p ©T, and it can
be observed that F (w,) therefore undergoes a proportionate compressional scaling
on the frequency axis as Tj is reduced. The amplitude of F (w,) isreduced asthe
square of T, . This behaviour is characteristic of the energy distribution of signals; as
the duration is reduced, the bandwidth ( or band of frequencies) occupied by the
energy density spectrum increases.

Finally, Parseval's Theorem may be confirmed for this example by substituting
the following integral eguation

¥
(‘jsin(x)lzdx =p (6.22)
-¥

which is available in published tables of integrals, into equation (6.21), leading
directly to

¥
0 AAPTS(sin(w;Tg)) dw, = 2A°T, (6.23)

t=-¥

1

E(¥) = 55

which corresponds to the calculation of energy obtained in the t domain (6.18).

Example20 Example A 2D Continuous Domain Gate Pulse g(t;, t,)
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Consider the 2D continuous domain gate pulse shown in Figure (6.7), having
amplitude Aintheinterval (-To, £t £Toy, - T £1, £ Typ) and zero amplitude
elsewhere.

FIGURE 6.7 A 2D Continuous-Domain Gate Signal

Thetotal energy is given, according to equations (2.116 ) and (2.125), by

¥ ¥ Toz T
E¥)= 0 0O lo(ty, t,)[ ot dt, = 0O 0O A%dt,dt, = 4AT, Ty, (6.24)

ty=—¥ t, =¥ tb=—Tp t; = —To

The 2D Fourier Transform is obtained from equation (6.3) as

T T

02 01

G(jwy, jwy) = A o (‘) exp[—j (wyty + wyty)] dt,dt,

tp=-Toa g =Ty

T01 T02
=A O exp(Hwit)dt; () exp(-jw,ty)dt
=Ty t, ==Tp, (6.25)
= a2 Ty snc(w, Ty, ) [ 2Ty,sinc(w,Ty,) ] (6.26)

where the terms in the square brackets are obtained from the integralsin equation
(6.25) using the method in Example (23). This function is shown in Figure (6.8).

FIGURE 6.8 The 2D Fourier Transform of the 2D Continuous-Domain Gate Signal G(jw,, jw,)
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The 2D energy density spectrum F (w4, w,) isgiven by

. . . 2. .
Ewy wy) = (0% W[ _ 16A o Tl Sne(wiTo)]l TsnewaTea)l”

(2p)* (2p)°

This expression is proportional to the product of two si ncz[ ] functionsandis
shown in Figure (6.9). Clearly, the effect of reducing the duration T,, of the gate sig-
nal in the direction t, , for example, isto increase the bandwidth of F (w,, w,) inthe
direction w, . Itisstraightforward to calculate E(¥ ) from F (w,, w,) by double
integration over the frequency domain so that

¥ 242 22 ¢ 2 o 2.
1 A®BAT, To,[sinc(w, Ty, )] [sinc(w,Ty,)] 0

E(¥) = = ~dw, dw (6.28)
2 O (20’ o
which, using equation () simplifiesto
E(¥) = 4A°T oy (6.29)

and corresponds to the t domain calculationin ().

FIGURE 6.9 The 2D Energy Density Spectrum

6.1.3 Linear Transformation Properties of the MD Fourier Transform

It is often the case that one knows the MD transform of a particular signal x(t)
and isinterested to know the transform of arelated signal x(u) where u is some new
coordinate MD system that is related to the coordinate system t by alinear transfor-
mation of the form

u = At (6.30)
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Thetransformation A might represent a combination of scalings and rotations of
the MD signal. The above scaling matrix G and the more general rotational matrix
R4 in Chapter 2 are specific examples of such transformations. We want to establish
the effect of such transformationsin the domain of the Fourier Transform.

Mathematical Preliminaries:

We shall need to call on the elementary property of matrices that

|
T

A (6.31)

(AB)' - B

and

(A" = A (6.32)

and, for anonsingular matrix (that is, where A exists)

det A = 1

" detA (€33

Finally, we shall write the transpose of theinverse A™ as A~ .

We shall also need the following fundamental result from elementary calculus,
involving multiple integrals under a change of variablesfrom t,, t,, %, t , to
Uy, Uy, %, u,. It may be shown [ref Sneddon p394] that

C\Y“d(tl't?%’t ydt,dt,Ya ot = c‘% O((tl, ty, Ya, t) 9y |dudu,Ya du - (6.34)
T u

where J, , is the Jacobian determinant

oo, T
fug Tu,  Tuy,
T T, it
Jw = | g Tu,  Tu, (6.35)

i T ,, T

fluy Tu, = Tup,

and where the transformation of variablest ® u mapsthe MD region of integra-
tion T into the corresponding MD region U. The subscipt ;, on the Jacobian indi-
cates that the transformation or mapping isfromt to u. It is easily shown, by direct
partial differentiation of the elements of A according to equation (6.35) that the Jaco-
bian determinant J,,, for the transformation in equation (6.30) is simply given by
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Jy, = det A (6.36)
Consider now the inverse transformation
t=A"u (6.37)
The Jacobian determinant J,,, is therefore given by
Jye = det A (6.38)
which, according to equation (6.33), isequivalent to

1

‘]Ut = a—e‘?—'& (6.39)

Proof of the Tran(6.32)ormation Property:

Given x(t) and that A isnonsingular, we want to derive the MD Fourier Trans-
form of x(At) whichweshall writeas X{(jw) . By definition,

¥
Xqw) = 0 X(At)exp(—jw' t)dt (6.40)
t=-¥

Assuming that A is nonsingular, substituting equations (6.30) and (6.37) into
(6.40) gives

¥
X@jw) = c‘) x(u)exp(—ijA_lu)dt (6.41)

t=-¥

Using the property of matrix transposes from equations (6.31) and (6.32) gives

wA™ = (A_l)T(WT)T = A'w (6.42)

Substituting equation (6.42) in (6.41) gives
¥
Xqjw) = c‘) x(u)exp(—ijA_lu)dt (6.43)

t=-¥

Using the Jacobian determinant from equation (6.36) and using equation (6.34) to
change the variables and limits of integrationto u gives
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6.1.4

¥

. N . _ 1 .
Xqiw) = ) x(u)exp(-A Twu)gTdetAlg (6.44)
u=—¥

We have ailmost arrived at the required result. If we define

we A Tw (6.45)
then equation (6.44) becomes
¥
. 1 .
X(jw) = —— A x(u)exp(—jWu)du 6.46
GW) = Gga) O XWexp(EwWY) (6.46)
u=-¥

which is the required result. Inspection of equation (6.46) reveals that thisis the
MD Fourier Transform of x(t) except that W has been replaced by the nfw fre-

quency variable W° A~Tw and the transform has been multi plied by TeiAl” We
have, in summary, Idet A
if x(t)0 X(jw)
then x(At) 0 XUA~ W)
|det A (6.47)

which we refer to asthe Linear Transformation Property of the MD Fourier
Transform.

MD ROTATION, SCALING AND SHIFT OPERATIONS
The Linear Transformation Property is now used to derive a number of useful
properties that relate operations in the domaint of x(t) to operationsin the fre-
guency domain w of X(jw).

MD Rotations

Assume alinear transformation R where the matrix R is defined to bereal and
orthogonal. Then, from the Linear Transformation property in equation ()

X(Rt) LT%((]R_TW) oldet R| (6.48)
where, from Section 2.?2.?, R hasthe properties that

R = Randdet R = #1 (6.49)

107

Copyright L.T. Bruton MD SIGNAL PROCESSING



File name: chap6éb.doc THE MD FOURIER TRANSFORM OF CONTINUOUS DOMAIN SIGNALSOctober

Substituting equations () into () gives the following transform pair under MD
rotation

md 7
x(Rt)U X(jJR w) (6.50)

We conclude that the rotation of a signal x(t) inthet domain causes an identical
rotation of X(jw) inthew domain. Thetransformation R isillustrated in Figure for
the2D case R = R;R,.

FIGURE 6.10 The 2D Rotation

MD Scaling

Let the dimensions of the MD signal be scaled using the linear transformation
diagonal matrix

t, 0 0

0t, 0
Godiag[ty, ty Ya, t,] = |- : : (6.51)

0

00..0t,

corresponding to a scaling of the orthogonal axes according to
X(Ct) = x(tqty, toty, ¥a, tt) (6.52)
Now, it follows from equation () that

G' = diag[leat,, 1at,, ¥4, 10t Y, 15t ] (6.53)
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and
det G = tqt %t Yat,, (6.54)

Substituting equations () and () in equation () gives the following result

md . _1
X(Gt) U X(jG W) ot t,YatYat,,) (6.55)
or, equivaently,
md . .
X(tqty, Yatity, Yat b)) U X(jwy oty Yajw; ot Yajwyat ) [ttt %t ))
(6.56)

Scaling the signal x(t) on the dimensional axesin the domain t isequivalent to
reciprocal scaling of the dimensional axes of the Fourier Transform in the w domain
and dividing the amplitude of the Fourier Transform by the magnitude of the product
of the scaling terms |t .t Yot Yat, |.

Combinations of Scalings and Rotations:

It is easily shown that for any two nonsingular matrices

(RGO =R, G' (6.57)
However, al scalings C satisfy
G'=G* (6.58)

and all rotations are orthogonal matrices satisfying

R, =R, (6.59)
so that, from equations (), () and (),

Rz_T = Rgl (6.60)

It follows directly from equations ( ), () and () that scaling-followed-by-rotation
is characterized by the transform pair

md = g
X(R,) U X(jR, w) dldet G| (6.61)

Example21 Scaling and Rotation of a 2D Signal
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Consider a 2D §gn§dx(tl, t,) asshownin Figure (6.11), having the
transform pair  x(t) U X(jw) and where [X(jw)| isshownin Figure

(6.11).
FIGURE 6.11 2D Example of Scaling and Rotation
Now, let x(t,, t,) becompressed by the the factor 2 onthe t; axisand
stretched by the factor 3 onthe t, axisasshownin Figure (6.12), followed
by a 45 degree anticlockwise rotation, as shown in Figure (6.12). The corre-
sponding transformationsin the domain t are given by
G° diag[1=2, 3] = 120 (6.62)
0 3
and
R, = cos(p »4) —sin(p #4) (6.63)
sinp o4 cos(p =4)
We note that
det(G) = (2)(1=3) = 213 (6.64)
and
RZ—T - R;l — |cos(po4) —sin(pa4)||2 O (6.65)
snpad cos(p ™) ([0 1=a3
FIGURE 6.12 2D Compression and Scaling
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A simple geometrical interpretation is now possible. From the above
expression and equation ( ), the Fourier Transform X(jR;'t) ajdet G| is
obtained from X(jw) by scaling the frequency axis w; by the factor 2, the
frequency axis w, by thefactor 13 and scaling the amplitude by 3 =2 as
shown in Figure . Finally, the Fourier Transform X(jR;'t) oldet G| is
obtained by rotating the function in Figure by 45 degrees anticlockwise, as
shown in Figure .

FIGURE 6.13 Effects of Compression-Scaling and Rotation in the 2D Frequency Domain

MD Shift Operations

Consider that the MD signal x(t) isshifted in the domain t by the vector b so
that the resultant shifted signal is x(t—b) . Then,

¥
FPIx(t-b)] = Qx(t —b)exp[—wt]dt (6.66)

t=¥

Substituting u® t—band du® dt intheright side of the above equation and
changing the variable and limits of integration gives
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¥
Fm[x(t—b)] = (‘)x(u)exp[—ij(u + b)]du
¥

¥
= exp[-jw'b] (‘)x(u)exp[—iju]du = exp[—jw'b]F™[x(t)]

u=¥ (6.67)

so that
F™[x(t-b)] = exp[wbIX(jw) (6.68)
Thisisthe MD Shift Property. It shows that the effect in the frequency domain of
shifting asignal by the vector b isto multiply the MD Fourier Transform by the con-

stant exponential term exp[—j w' b] ; thisleaves the magnitude of the Fourier Trans-
form unaltered while subtracting w 'b fromits phase.

Example22 The 2D Shift Operation

Consider that the 2D signal x(R,t) isshifted by the vector

be [b, b,]' (6.69)

asshownin Figure 3.15(a), corresponding to the shifted signal x(R,t —k) . Then,
according to equation (), the magnitude spectrum of this shifted signal isthe same as
Figure $3.14(f)$ and is essentially unaltered by the shift operation. However, the 2D
phase spectrum of Figure 3.15(a) is altered by the shift; the phase correction due to
shifting is given by

—w'b = —(w,b, +w,b,) (6.70)

which isthe planar function shown in Figure $3.15(c).

FIGURE 6.14

The 2D Shift Operation
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6.2 THE FOURIER TRANSFORM OF DISCRETE DOMAIN
SIGNALS

The Fourier transform of discrete domain signals x(n) is an important special
case of the above continuous domain analysis, primarily because signal are most
often processed as sampled versions of the continuous domain signal. The constraints
that are imposed by the sampling process will be considered in the next chapter. For
now, we assume the existence of an amplitude-bounded finite-energy uniformly-sam-
pled discrete domain MD signal x(n; T4, NyT,, ¥, N, T, . The Fourier transform of
such asignal is given by

n=¥
X(jw) = é X(Ny Ty, No T, ¥a, Ny T )exp(—(wyng Ty + Wonp T + %2 + Winy, Try))
n=-¥

(6.71)

FOURIER TRANSFORM OF A DISCRETE-DOMAIN SIGNAL

which is usually written in the distance normalized form by assuming that T; is
unity for i = 1, 2, ¥4, r, giving

n=¥
X(jw) = § x(n)exp(Hw'n) (6.72)
n=-¥

FOURIER TRANSFORM OF A DISCRETE DOMAIN SIGNAL HAVING
UNIT DISTANCE BETWEEN SAMPLES

where n = [ny n, ¥4 nm]I . The corresponding inverse Fourier transform is
given by
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w =
1 N

m
@n)",

P
X(jw)exp[ijn] (6.73)

x(n) =
=-p

INVERSE FOURIER TRANSFORM OF A DISCRETE DOMAIN SIGNAL

The above transform pairs are written

md
x(n) U X(jw) (6.74)

A sufficient condition for the existence of X(jw) isthat x(n) be sguare summa-
ble and therefore satisfy equation (). Equivalently, all finite energy discrete domain
signals have a Fourier transform.

6.2.1 Parseval's Theorem

The relationship between the energy of (generally complex) discrete domain sig-
nalsin the dmn n and the domain dmn w isthe discrete version of Parseval's Theo-
rem (equation () ) and is given by

=p
A X(w)Y* (jw)dw (6.75)

n=¥ w
EM¥)° § x(ny*(n) = ——
n=-¥ 2 ) w=—p

PARSEVAL'S THEOREM IN THE DISCRETE DOMAIN

This relationship between the energy of atwo-pairin dmn t and the Fourier
transforms of the two-pair signalsin dmn w isimportant becauseit is the basis for
the design of the widely employed class of passive high performance discrete domain
filter algorithms. Some of these algorithms are discussed in Chapter ?. With y(n) set
equal to x(n) , the above result gives the energy of asingle signal x(n) as

w=p
\

0 [X(j W)|2dW (6.76)

n=¥
E(¥)° g IKn)® = ——

n=-¥ w=-p

and equation () is also the MD energy density function of a discrete domain sig-
nal.
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6.3 PROPERTIES OF THE MD FOURIER TRANSFORM

Many widely encountered operations on asignal x(t) in dmn t correspond to
straightforward equivalent operations on the Fourier transform X(jw) in dmn w .
Some of the more important of the operations are given below for the continuous
domain transform pair in equation (). Similar relations hold for the continuous
domain case, except where specifically noted.

Linearity Property Given

md md
X (1)U X (jw) and  x,(t) U X,(jw) (6.77)

then, for any complex numbers a and b,

_md
axy(t) + bxy(t) U aX(jw) + bX,(jw) (6.78)
This property allows the Fourier transform to be widely employed. For example,
with a ® b° 1, equation () simply implies that the transform of the sum (that is
superposition) of a set of signals may be obtained from the sum of their individual
Fourier transforms. Thisis the Principle of Superposition and is fundamentally
important and widely employed in the analysis and design of signal processing sys-
tems.
Complex Conjugation Property

It follows directly from equation () that

* md* :
X (1)U X (—w) (6.79)

Real Part Properties

It follows from equation () that

Re[x(1)] 0SXGw) +X* (-jw)] .50
and
g
Re[X(jw)] 0 SIX(0) + X' (-0)] 60

Imaginary Part Properties

It follows from eguation () that
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. mg .
jmx(t)] U Q[X(JW)—X (iw)]
and

g d%[x(t)—x* ()]

JITmX(jw)]
Frequency Domain Properties for Real Signals x(t)
Given that the signal x(t) T R™, then it follows from equation () that
X(jw) = X*(<jw)
from which it follows directly that
Re[X(jw)] = Re[X" (-jw)]
and

Im{X(jw)] = —Im[X* (=jw)]

(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

Equation () isthe reflective conjugate symmetry property of real MD signals;
symmetry properties are pursued in more detail in Section 3.?7?. A number of addi-
tional properties follow, for real signals x(t) , as a consequence of the reflective con-

jugate symmetry property (see Problem 3.7?). It is easily shown that
X(Gw)l = IX* (jw)]
and

Re[X(jw)] = Re[X(-jw)]

(6.87)

(6.88)

implying that the magnitude Fourier spectrum [X(jw)| and the real part Fourier

spectrum Re[ X(jw)] of real signals have even symmetry about the frequency

domainoriginw = Q inall m frequency variables w;, i = 1, 2, %, m. We shal

later define this type of MD symmetry as centro-symmetry. Similarly,

Im[X(jw)] = —Im[X(-jw)]

(6.89)

implying that the imaginary part Fourier spectrum I m[X(jw)] has odd symmetry

inal m frequency variables.
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6.4 SYMMETRIES UNDER TRANSFORMATIONS OF THE
SIGNAL X(n) AND ITS FOURIER TRANSFORM

In many practical applications, the signal x(t) is constrained by the nature of the
problem at hand. In some applications, the signal may exhibit particular symmetries

in dmn t that lead to corresponding symmetriesin the frequency domain dmn w.
There are many different kinds of symmetry constraints that can be analyzed and that
have been reported in the literature [Reddy, Rajan, Swamy]. In general, asignal x(n)

is said to possess asymmetry, or identity symmetry, under the operation F[.] and
over the domain dmn't if

FIx()] = x(1) (6.90)

FIx(t)] = —x(t) (6.91)

Thesignal x(t) issaidto beantisymmetric under the operation F[.]. Similarly,
if

F[x(t)] = x*(t) (6.92)
then x(t) issaid to be conjugate symmetric under the operation F[.] and if
FIx(t)] = (1) (6.93)

then x(t) issaid to be conjugate antisymmetric under the operation F[.] The
above symmetries become reflective symmetries if they are valid when t isreplaced
by —t on theright side. For example, X(jw) inequation () possesses reflective con-
jugate antisymmetry!

We shall consider some of the elementary symmetries of x(t) that have practical
implicationsin signal processing.

6.4.1 SYMMETRIES UNDER ORTHOGONAL TRANSFORMATIONS

Symmetries under the orthogonal transformations of equation () are of particular
interest; that is, the class of symmetries defined by

X(At) = x(t) (6.94)
where, by orthogonality, A © AT (6.95)

Recall that the lengths of vectors are invariant under the orthogonal transforma-
tions of equation () . Equation () therefore corresponds to the class of symmetries for
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which there exists a length preserving real transformation A that leaves the signal
unaltered. It follows directly from equations () and () that, for such transformations,

x(w) Pt = x@a W x(jw) (6.96)
so that
X(jw) = X(jAw) (6.97)

That is, symmetry under an orthogonal transformation on x(t) inits dmn t
implies the identical symmetry under the same transformation on X(jw) inits
domain dmn w .

There are many such transformations, some of which have particularly straightfor-
ward interpretations in the 2D and 3D cases. Some of them are considered in the fol-
lowing and some are considered in the problems at the end of this chapter. We
consider symmetries under rotations and reflections.

Example23 2D Rotation by 180 Degrees
In the 2D case, geometrical rotation of x(n;, n,) by 180 degrees

in dmn n correspondsto ¢, ° p in equation (). Then, the rotation
matrix R;(=A) is given by

A=R; = [‘1 O] (6.98)
0 -1
so that
X(t1, 1) = x(=t3,—t5) (6.99)
and
X(w, jwy) = X(=jwy, —jwp) (6.100)

Example24 2D Rotation by 90 Degrees

In the 2D case, geometrical rotation of x(t,t,) by 90 degreesin dmn n corre-
spondsto g, © p 82 inequation (). Then, the orthogonal rotation matrix R,(=A) is
given by

A=R; = {0 1:| (6.101)

so that
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X(ty, t,) = x(t,, —t;) (6.102)
and

X(jwy, jwy) = X(jwy, —jw,) (6.103)

6.4.2 SYMMETRIES UNDER REFLECTIONS

Symmetries under reflectionsin dmn t lead to particular symmetriesin the corre-
sponding Fourier transform. The following symmetries under reflections are further
examples of orthogonal transformations so that identical symmetries exist in both the
dmn t and the dmn w.

Reflection Symmetry of x(n) About One Axis Suppose that the signal is equal
toitsown reflection about thei th axis or dimension. Equivalently, the (generally
complex) signal x(t) hasthe property that it remains unaltered after areversal in sign
of thei th dmensional variable t; ; then

X(ty, tp, %, t;, Ya, ty) = X(tg, t, Ya ,—t;, Ya, t,) (6.104)

and it follows directly from equation () and equation () that

X(ty, to, %, t, Ya, ty) Lﬁnq((j Wy, JWy, Ya, —jW;, Ya, jw,,) (6.105)

Clearly, symmetry of x(t) about theithaxisin dmnt correspondsto symmetry
of its generally complex Fourier transform X(jw) about the same axis. The same
result can be obtained by substituting A = diag[1,1, ¥, -1, ¥, 1, 1] in equation (
) , where —1 isthei th entry. Thistype of symmetry is also referred to as twofold

symmetry about the i th axis because clearly the signal is unaltered if geometrically
folded, in the 2D case, about the corresponding axis.

Reflection Symmetry of x(t) About All Axes(Centro-Symmetry) It follows,

by extension of () to all dimensions, that if x(t) has reflection symmetry about t in
al dimensionsthen

x(t) = x(-t) (6.106)
and
X(w) = X(=jw) (6.107)
This correspondsto A = —| inequation (). Thistype of symmetry is often

referred to as centr o-symmetry and we state that the signal has M-fold symmetry
about theM axesin R™. It may be noted that the previously considered case of 2D
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180 degree rotational symmetry also corresponds, in this particular example, to 2D
centro-symmetry.

Diagond , Quadrantal and Octagonal Symmetries|n the 2D case, the defini-
tion of reflection symmetry about the diagonal 45 degree line

tp = t, (6.108)
isgiven by
X(ty, tp) © X(tp ty) (6.109)

as shown in Figure $3.?72(b)$. The corresponding symmetry relationship in the
frequency domainis

X(wg, jwy) = X(jwz, jw) (6.110)
The definition of reflection symmetry about the diagonal -45 degree line
t, = —t, (6.111)
isgiven by
X(ty, t) © X(-ty, —t;) (6.112)

as shown in Figure $3.?72(c)$. The corresponding symmetry relationship in the fre-
guency domain is

X(jWq,jwp) = X(=jwp, —jwy) (6.113)

A 2D signal having symmetry about both the 45 and -45 degree lines satisfies both
equations () and () and is said to have 2D diagonal symmetry.

A 2D signal issaid to be Quadrantally Symmetricif it has twofold symmetry
about both axes so that

X(t, 12) © X(=ty, 1) © X(ty, —t5) © X(~ty, —t5) (6.114)

as shown in Figure $3.72(d)$. Clearly, Quadrantal Symmetry implies centro-sym-
metry aswell as symmetry in all four quadrants from which it follows that

X(jWy, jWp) © X(=JWy, jwp) © X(jwg, =jWp) © X(=jwq, —jWy) (6.115)

A 2D signal is defined to have Octagonal Symmetry if it has both Quadrantal
and Diagonal Symmetry, as shown in Figure $3.72(e)$, and therefore must satisfy
X(tl, tz) © X(—tl, tz) ° X(tl, _tz) ° X(_t11 _tz)

° X(tzy tl) ° X(_tzy tl) ° X(tzy _tl) © X(_tzy _tl) (6.116)
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The corresponding frequency domain symmetry is given by
X(jwa, Jwa) © X(wg, jwa) © X(jWg, =jwp) © X(—wg, —jwy)

© X(Wa W) © X(JW IWi) © (i —jwr) © X(woewy)

6.4.3 REFLECTION SYMMETRIES OF THE MAGNITUDE SPECTRA OF REAL
SIGNALS

In many practical situations, we are concerned with the reflection symmetries of
real signals. When we come to consider the input-output behaviour of linear signal

processing systems, for example, the signal x(t) is often the real response of the sys-
tem to somereal excitation. In such cases, it is often possible to conclude that the

magnitude spectrum [X(jw)| possesses further symmetriesin dmn w that do not
existin dmn t . These symmetries can then be exploited to save effort in the design of

systems. Essentially, one uses [X(jw)| = |X*(jw)|, the additional constraint in equa-
tion ().

Example25 Twofold Symmetric Magnitude Spectrumof a 2D Real Sig-
nal

We will show that twofold symmetry of the magnitude spectrum is
sufficent to ensure quadrantal symmetry of the magnitude spectrum

of a real 2D signal.

Suppose that a real 2D signal has the twofold symmetry in the
dimension t; so that

X(ty, 1) © X(=ty, ), X(t, t,)1 R’ (6.118)
Then, by the general reflection Reflection Symmetry property,
X(jwy, jwy) = X(=jwq, jw,) (6.119)
from which it follows that
[X(Gwy, jwo)| = X(=jwy, jwy) (6.120)
However, for real signals and from equation ()
|X(jW11jW2)| = |X(—jV\‘11 —jW2)|
Then, comparing equation () and equation () it follows that
IX(wa jwo)| = X(mwq, =jwo)| = [X(=jwy, jwp)| = [X(jwy, —jwy)| (6.121)

which proves quadrantal (four-fold axis) symmetry of the magni-
tude spectrum [X(jwy, jw,)|; that is, its twofold symmetric about n;
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implies twofold symmetry about n, and therefore quadrantal symme-
try. Note that quadrantal symmetry does not imply 2D diagonal sym-
metry.

Example26 Octant Symmetriesof the Magnitude Spectrum of a Real
3D Signal

In R®, anthere are eight octant regions, corresponding to the four quadrantsin
R%. In dmnt ,they aretheregions {t|+t; % 0, £t,3 O, xt33 0} . It follows from
the congugate symmetry property in equation () that, for real signals x(t;, t,, t3) , the
magnitude spectrum [X(jw,, jw,, jw;)| hasreflective symmetry over each of the four
pairs of opposite quadrants, as shown in Figure 3.??. For example, over the two oppo-
site frequency domain octants {w|w; £ 0,w,3 0, w52 0} and
{w)w, 2 0, w, £ 0,ws £0} , the magnitude spectrum |X(jwy, jw,, jws)| has reflec-
tive symmetry.

6.4.4 SYMMETRIES IN THE DISCRETE DOMAIN CASE

It should be noted that discrete domain signals x(n) cannot possess certain types

of symmetries. For example, the rotational symmetries, x(n) = x(Rn) n1 z",
will only exist if R issuchthat Rn1 z". Clearly, if R correspondsto a 2D rotation

of 90 degrees, the rotated samples Rn do indeed fall in Z™, as shown in Figure
3.72(a). However, for the 2D rotation of 45 degrees, the rotated samples do not fall in

z™ , asshownin Fi gure $3.72(b)$, and therefore we cannot apply the symmetry
result in equation ().

6.5 FREQUENCY DOMAIN PROPERTIES OF 3D LT SIGNALS

Consider the 3D LT duration unbounded signal x,(t),tT R®,shownin
Fig.??2.?7? and having the unit constant signal vector d and the 3D Fourier Transform
X (w) . Further, consider asecond related LT signal X;(t) asshown in Figure.??2.?7?
, which is obtained from x;,(t) by means of an appropriate rotation so that the direc-

tion of its constant signal intensity vector d pointsin the direction of the t; axis, that
isso that

d=TJoo 1:|T (6.122)

as shown in Figure ?2.72 . Let the 3D rotation that transforms d into d be given
by the geometry of Figure ??.?? so that

d = Rd (6.123)
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where R isthe 3D rotation matrix in equation ().

Let the 3D Fourier transform of X, (t) be written Xit(w) sothat
¥
Xe(w) = @) % (e’ dt
t=-¥

(6.124)

However, thesignal X,(t) has constant intensity in the direction of the t; axis
and therefore can not be a function of t,. We may therefore write

Xt (t) = Xstatic(ts to) (6.125)

where X ;. (t;,t,) hasbeen givenin the subscript static to reflect the fact that, if
t5 isconsidered asthe temporal axis, then the signal is static with respect to time. Itis
a 2D function of only the spatial axes t,, t,. From equations () and (),

¥

n . i’
Kie(W) = ) Xarioltys t,)e’" 'dt (6.126)
t=—¥
Writing
Wt Mg (6.127)

in equation () and separating the three integrations over each dimension gives

¥ ¥ ¥
T <~ _wgt N N —jw,t; —jw,t
Xi(iw) =y e ity 0O O Xsaic(tuty)e Te Tt dt, (6.128)
t,= ¥ t =¥t =¥

Writing the Fourier transform of X, (t;,t,) 8 Xstatic(W,, W,) , the above
equation becomes
¥

Xit(jw) = Xstatic(jwy, jw,) (‘) e
t,=—¥

—jw,t
ity (6.129)

Now, the term involving the integration is recognized from the 1D Forurier trans-
form pair
¥
N vt
X(tz)° 1 gd 2pd(ws) = O¢ dt (6.130)
¥

ty
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Substituting the right side of equation () into equation () gives
klt(jW) = Xstatic(JW1, JW2)2p d'ws) (6.131)

Therefore the spectrum 5(|t(w) of aLT signal having a constant signal trajectory

d in the direction of the ty axisisequal to Xgaic(jWq, jw,) everywherein the pla-

nar region w; = 0 and zero everywhere outside this plane. Clearly, 5(|t(w) is uni-
planar , as shown in Figure ??2.?7?, with the normal to the plane in the direction of the
W axis.

It isnow a simple matter to find the Fourier transform of the general LT signal
x¢(t) by using the rotation property in equation (). From equations (), () and (),

Xi(iw) = Xi(iR™'W) = Xie(iRW) = Xgaric(iw w9 2pd(ws 9
7 before omega 377 (6.132)

where

w,¢= cosq,w,-sng,w,
W, ¢ = €0sQ,Sing;W, + C0Sg,COSH W, — SINCL,W3

w,C = sing,sing,w; + sing, c0sq; W, + CoSq,W; (6.133)

Thedirac function c(jw0) impliesthat the Fourier transform X;;(jw) of the
general LT signal x,,(t) isequal to X ;. (jw,¢ jw,() everwhere in the planar
region ws¢ = G and equal to zero everywhere outside of this planar region. Clearly,
X((w) isa uniplanar signal. The plane w0 = O iswritten in terms of the above

expressionfor wgd = Q as
(sing,sing;)w, +(sing,cosq;) W, + (cosqz)ws = 0 (6.134)

Thisplaneistheregion of support of the spectrum X (jw) of ageneral LT sig-
nal. The orientation of this plane is easily determined in terms of the orientation of
X (t) initsdomain. Equation () impliesthat the rotationR in w correspondsto the

same rotation in t ; therefore the uniplanar spectrum X;;(w) undergoes the same rota-
tion into X((w) aswas applied to X:(t) toobtain X;(t) . Wetherefore expect that

eguation (') corresponds to the plane d'w = 0,whered isthe constant signal LT
vector in the domain t. Thisis easily proven from equations (), () and ().
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In summary, LT continuous domain signals x,(t) possessa Fourier transform

X¢(jw) that isuniplanar in a plane of the domain w1 R® and the plane has a nor-
mal given by the constant signal vector d of the signal x(t) .

TheFinite Duration Case and Spectral L eakage Outside the Plane: It should
be noted that our ideal analysis of the spectrum of an LT signal has assumed tha

X (t) hastheLT property throughout the entire region R™. In practical applications,
the LT signal has afinite region of support along some (and usually all) of its dimen-

sions. This has the practical consequence that the corresponding spectrum X;(w) is

not exactly contained in aplane; there will be some |eakage of the spectrum outside of
the plane and this leakage will decrease as the region of support becomeslarger in all
of the dimensions.

6.6 FREQUENCY DOMAIN PROPERTIES OF PW SIGNALS

Assume the Fourier transform pair

Xow(iw) T X, (1) (6.135)

for the ideal plane wave signal xpw(t) , shown in Figure ?2.?? for the 3D case. We
want to determine the properties of the Fourier transform XpW(j w) of aplane wave.
The following analysisis for the 3D case and is easily generalized to the mD case.

Consider the general 3D plane wave X,,(t) givenby
Xow(t) © Xoane(1)]d't = | (6.136)

implying the direction of propagation vector d shown in Figure 2.??. Clearly,
there exists another plane wave X, (t) having the direction of propagation

do [did2 (A:ig]T =[00 1]T (6.137)

and related to x,,(t) by the appropriate rotation

d = Rd (6.138)
Then, we have
Xpw(t) © Xplane(l)laTt = (6.139)
or, equivaently,
Xow(t) © Korane(D [tz = 1) = Xpiane(ts) (6.140)
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where X,,,(t) isshownin Figure 2.27.

First, we define the 3D Fourier transform of the planewave X, (t) = X;jane(ts)

as Xpiane(W) , S0 that by definition

¥
$ N —jw't
Xplane(W) = 0 Xplane(t3)e Mt

t=-¥

¥ ¥ ¥
—jw,t —j w,t —jw,t
= Qe dt e, ) Xpanelt)e Uty

t, = ¥ t,= ¥ t,= ¥

¥
—jWstg

= 2pd(W1)2pd(W2) (‘) Xplane(ts)e dt3
=¥ (6.141)

Now the term involving the 1D integration in the above equation is simply a 1D
Fourier transform of the signal X, (t3) over the variable t; which, for brevity, we

writeas X (w) where

plane

¥
—JWsts

Xplane(W) ° c\) Xplane(tS) € dts (6.142)
t,=-¥

Xpiane(W) issimply the 1D Fourier transform of the signal in the direction of
propagation of the plane wave. Combining the above two equations gives

Xpw(W) = 2pd(W,) 2pd (W)X 4 (W) (6.143)

The product of the two delta functions ensure that the region of support of

Xpw(W) is confined to the region of R® defined by
Wy = W, = 0 (6.144)

which issimply the straight line given by the wy axis. That is, as one might
intuitively expect, the plane wave >“<pW(t) , having its direction of propagation along
the t; axis, hasa Fourier transform that is zer o everywhere outside the w; axis
inw° R®.We may now apply the rotation property of the Fourier transform to arrive

at the required Fourier transform Xpw(jw) of the general 3D plane wave. Thus, using
the 3D rotation vector
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cosq; —-sinqg, 0
R = |cosg,sing; cosq,cosq, —sing, (6.145)
sing,sing; sing,cosq, Cosd,

and the corresponding frequency domain rotational relationship

w = RW (6.146)
we may write
Xpw(W) = 2pd(W;)2p d(Wz)X;ane(Ws) (6.147)
where
W, = (cosq,)w, —(sing,)w,
W, = (cosq,sing;)w, + (cosq,cosq,)w, —(sing,)w,
W, = (sing,sing,)w, + (sing,cosq;)w, + (00sq,)W,

(6.148)

Equation () isthe required result, expressing the Fourier transform of the general

3D planewave X, (w) intermsof the 1D Fourier transform X ,..(w) of thesig-

nal xplane(l) . The product d(W,)d(W,) ensuresthat Xpw(w) is zero everywhere
outside of the rotated line defined by

which is aline passing through the origin that is normal to the plane given by
In terms of the frequency components of w, this planeis given by

W, = (sing,sing;)w, + (sing,cosq,)w, + (cosq,)w; = 0 whichisequiva-
lent also to the plane

d'w = 0with d = [(sing,sing,) (sing,cosq;) (cosq,)]' ,thedirection
of propagation of x,,,(t) in its domain.

In summary, we have shown that a general 3D plane wave, given by equation

(), and therefore characterized by xp,anar(l) and itsdirection of propagation d,
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hasa 3D Fourier transform Xpw(w) having a region of support that isa straight
linethrough theorigin. The direction of thislineis determined by the fact that it

isnormal to the plane d 't; thereforethe direction cosines of the line arethe
componentsof d. T he value of Xpw(w) along the straight lineis given by the 1D

Fourier transform Xganar (W) , which isthe 1D Fourier transform of the 1D
function X, anar(l) -

?7in preceeding paragraph subscript ' planar’ is used but previously the subscript
"plane’ was used???
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