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CHAPTER 6 The Fourier Transform

6.1 THE MD FOURIER TRANSFORM OF CONTINUOUS 
DOMAIN SIGNALS

It has so far been established that continuous-time  periodic MD signals  may 
be exactly represented by means of the MD Fourier Series and it has been shown that 
such signals possess an interpretation in the frequency domain in terms of MD pha-
sors and MD harmonics. However, in many applications, MD signals are not periodic 
and may not be expressed as a Fourier Series. For example, all finite duration MD sig-
nals are essentially nonperiodic.

The Fourier Transform may be used to obtain the frequency domain characteris-
tics of nonperiodic signals.  In this section, the Fourier Transform of continuous-

x t( )
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domain MD signals is described. Subsequently, it is shown that the Fourier Transform 
of discrete-domain signals may be described in a similar way.

It will also be shown that the Fourier Transform can be used to determine the 
energy distribution of a MD signal in the frequency domain; a result that is fundamen-
tally useful for the design of many MD signal processing algorithms, including the 
design of MD filters.

Consider an amplitude bounded continuous-domain MD signal , . 
The MD Fourier Transform  of  is defined as follows

(6.1)

Writing

(6.2)

and

(6.3)

we may write equation (6.1) in the compact form

(6.4)

                           THE MD FOURIER TRANSFORM      

The Inverse MD Fourier Transform is given by

                                                                          (6.5)
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(6.6)

 and

(6.7)

The MD Fourier Transform operation on  in equation (6.4) is written, for 
brevity, as 

(6.8)

so that

(6.9)

and, similarly, the MD Inverse Fourier Transform operation on   in equa-
tion (6.5) is written

 (6.10)

 so that

 (6.11)

We shall write the MD transform pair as

(6.12)

It should be noted that the regions of integration for  and  in equations (6.3) 
and (6.4) are the entire MD region  .

The MD integral in equation (6.4) must exist if  is to exist. A sufficient 
condition for this integral to exist is that  be square integrable over , accord-
ing to the definition of square integrability in equation (??? ) ; that is,  is a finite 
energy signal. Periodic signals have infinite energy and therefore their Fourier Trans-
form does not exist. Infinite duration signals have a Fourier Transform if they are 
finite energy signals.

The function  is referred to as the magnitude spectrum and the function 
 as the phase spectrum of the signal . The magnitude and phase spec-

tra possess certain symmetries in the frequency domain   that are described in 
Section (6.4) under the discrete domain case.
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6.1.1 Parseval's Theorem for Continuous-Domain MD Signals

Parseval's Theorem is important because it provides a relationship between the 
signal  in the continuous domain and the distribution of the energy of the signal 
in the frequency domain.

Consider a pair of generally complex MD signals  and . The energy of 
this signal pair at  is obtained directly from equations  ( ???) and ( ???) and is 
given by

(6.13)

For a complex MD signal pair, it may be shown from the definition of the MD 
Fourier transform in equation (6.3) that

(6.14)

The above expression is the MD version of Parseval's Theorem for continuous-
domain signals. For a single complex MD signal, equation (6.14) reduces to

(6.15)

The  real function

(6.16)

is defined as the MD energy density spectrum of . It describes the disribu-
tion of the energy of  over the frequency domain .

6.1.2 Geometric Interpretation of Parseval's Theorem for the 2D and 3D Cases:

Consider, for example, a continuous-domain square-integrable 2D signal 
, as illustrated in Figure (6.1) . The total energy of the signal  , as 

shown in Figure (6.2)., is obtained by integrating  over the infinite-extent 
planar region . The total energy is, by definition, the volume under the surface 

 in Figure (6.2).
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FIGURE  6.1 A Continuous-Domain Square-Integrable Signal 

(insert here)

FIGURE  6.2 Total Energy as Integral Under the 2D Surface 

(insert here)

 

The Fourier Transform of  is generally a complex function, as illustrated 
in Figure (6.3). The real energy density spectrum 

(6.17)

 may be obtained as illustrated in Figure (6.4). The total energy of the signal may 
be interpreted, according to the right side of equation (6.15), as the volume under the 

x t1 t2,( )

x t1 t 2,( )

x t1 t2,( )

Φ ω1 ω2,( ) X jω1 jω2,( )
2

2π( )
2

⁄≡



File name: chap6b.doc THE MD FOURIER TRANSFORM OF CONTINUOUS DOMAIN SIGNALSOctober 

100 Copyright L.T. Bruton  MD SIGNAL PROCESSING

surface  in Figure (6.2). The function  is therefore appropri-
ately referred to as the energy density function because it describes the distribution of 
signal energy throughout the 2D frequency plane. It is often possible to enhance 2D 
signals by altering their energy density function  in a specific and useful 
way. We will return to this topic.

FIGURE  6.3 The 2D Fourier Transform

FIGURE  6.4 The 2D Energy Density Spectrum 

The 3D case is an obvious extension of the above 2D example. The total energy 
 is then interpreted as the integral of  over the entire 3D region 

 and the energy density spectrum  is the frequency distribution of 
the total energy  over the frequency volume . The value of the integral of 

 over some finite volume  of the frequency space is the energy 
of the signal contained in that region of the 3D frequency space.

 Example 19    Example A 1D Continuous-Domain Gate Pulse 

Consider the 1D gate pulse  shown in Figure (6.5). This is a nonperiodic 
finite-energy signal, having amplitude A over the interval  and zero 
amplitude outside of this interval.
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FIGURE  6.5 A 1D Continuous-Domain Gate Signal  

 Before finding the Fourier Transform  and the energy density spectrum 
, we note that the total energy  is easily obtained by means of the inte-

gral in equation (6.15) and is therefore given by

(6.18)

as illustrated in Figure (6.5) . The Fourier Transform of  is given by

(6.19)

The above integral may be evaluated in a similar way to the calculation in Exam-
ple (25), leading directly to

(6.20)

so that the energy density spectrum is given by

(6.21)

The Fourier Transform  and the energy density spectrum  are 
shown in Figure (6.6). The total energy  is the area under the curve  and 
the shaded area corresponds to the energy in  that is in the frequency intervals 

. It should be noted that  and  
are continuous functions of frequency . This is characteristic of finite energy sig-
nals.
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FIGURE  6.6 The 2D Energy Density Spectrum

It will be observed that the shape of  depends on the duration  of the 
pulse  in a characteristic way; if the duration of the pulse is reduced, by reduc-
ing , then the total energy is also reduced in proportion to , according to equa-
tion (6.18). The zero crossings of  are at integer multiples of  and it can 
be observed that  therefore undergoes a proportionate compressional scaling 
on the frequency axis as  is reduced. The amplitude of  is reduced as the 
square of  . This behaviour is characteristic of the energy distribution of signals; as 
the duration is reduced, the bandwidth ( or band of frequencies ) occupied by the 
energy density spectrum increases.

Finally, Parseval's Theorem may be confirmed for this example by substituting 
the following integral equation

(6.22)

which is available in published tables of integrals, into equation (6.21), leading 
directly to

(6.23)

which corresponds to the calculation of energy obtained in the  domain (6.18).
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Consider the 2D continuous domain gate pulse shown in Figure (6.7), having 
amplitude A  in the interval  and zero amplitude 
elsewhere.

FIGURE  6.7 A 2D Continuous-Domain Gate Signal

 The total energy is given, according to equations (2.116 ) and (2.125), by

(6.24)

The 2D Fourier Transform is obtained from equation (6.3) as

(6.25)

(6.26)

where the terms in the square brackets are obtained from the integrals in equation 
(6.25) using the method in Example (23). This function is shown in Figure (6.8).

FIGURE  6.8 The 2D Fourier Transform of the 2D Continuous-Domain Gate Signal  
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 The 2D energy density spectrum  is given by

(6.27)

This expression is proportional to the product of two  functions and is 
shown in Figure (6.9). Clearly, the effect of reducing the duration  of the gate sig-
nal in the direction , for example, is to increase the bandwidth of  in the 
direction . It is straightforward to calculate  from  by double 
integration over the frequency domain so that

(6.28)

which, using equation ( ) simplifies to

(6.29)

and corresponds to the  domain calculation in ( ).

FIGURE  6.9 The 2D Energy Density Spectrum 

6.1.3 Linear Transformation Properties o f the MD Fourier Transform

It is often the case that one knows the MD transform of a particular signal  
and is interested to know the transform of a related signal  where  is some new 
coordinate MD system that is related to the coordinate system  by a linear transfor-
mation of the form

(6.30)
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The transformation A might represent a combination of scalings and rotations of 
the MD signal. The above scaling matrix  and the more general rotational matrix 

 in Chapter 2 are specific examples of such transformations. We want to establish 
the effect of such transformations in the domain of the Fourier Transform.

Mathematical Preliminaries:

We shall need to call on the elementary property of matrices that

(6.31)

and

(6.32)

and, for a nonsingular matrix (that is, where  exists)

(6.33)

Finally, we shall write the transpose of the inverse  as .

We shall also need the following fundamental result from elementary calculus, 
involving multiple integrals under a change of variables from  to 

. It may be shown [ref Sneddon p394] that

(6.34)

where  is the Jacobian determinant

(6.35)

and where the transformation of variables  maps the MD region of integra-
tion  into the corresponding MD region . The subscipt  on the Jacobian indi-
cates that the transformation or mapping is from  to . It is easily shown, by direct 
partial differentiation of the elements of A according to equation (6.35) that the Jaco-
bian determinant  for the transformation in equation (6.30) is simply given by
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(6.36)

Consider now the inverse transformation

(6.37)

The Jacobian determinant  is therefore given by

(6.38)

which, according to equation (6.33), is equivalent to

(6.39)

Proof of the Tran(6.32)ormation Property:

Given  and that A is nonsingular, we want to derive the MD Fourier Trans-
form of  which we shall write as . By definition,

(6.40)

Assuming that A is nonsingular, substituting equations (6.30) and (6.37) into 
(6.40) gives

(6.41)

Using the property of matrix transposes from equations (6.31) and  (6.32) gives

(6.42)

Substituting equation (6.42) in (6.41) gives

(6.43)

Using the Jacobian determinant from equation (6.36) and using equation (6.34) to 
change the variables and limits of integration to  gives
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(6.44)

We have almost arrived at the required result. If we define

(6.45)

then equation (6.44) becomes

(6.46)

which is the required result. Inspection of equation (6.46) reveals that this is the 
MD Fourier Transform of  except that  has been replaced by the new fre-
quency variable  and the transform has been multiplied by . We 
have, in summary,

 (6.47)

which we refer to as the Linear Transformation Property of the MD Fourier 
Transform.

6.1.4 MD ROTATION, SCALING AND SHIFT OPERATIONS

The Linear Transformation Property is now used to derive a number of useful 
properties that relate operations in the domain  of  to operations in the fre-
quency domain .

MD Rotations

Assume a linear transformation  where the matrix  is defined to be real and 
orthogonal. Then, from the Linear Transformation property in equation ( )

(6.48)

where, from Section 2.?.?,  has the properties that
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Substituting equations ( ) into ( ) gives the following transform pair under MD 
rotation

(6.50)

We conclude that the rotation of a signal  in the  domain causes an identical 
rotation of  in the  domain. The transformation  is illustrated in Figure  for 
the 2D case .

FIGURE  6.10 The 2D Rotation

MD Scaling

Let the dimensions of the MD signal be scaled using the linear transformation 
diagonal matrix

(6.51)

corresponding to a scaling of the orthogonal axes according to

(6.52)

Now, it follows from equation ( ) that

(6.53)

md
x Rt( ) X jR
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ω( )⇔

x t( ) t
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τ1 0 . . 0

0 τ2 0

. . .

. . .
0 . .
0 0 . . 0 τm
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and

(6.54)

Substituting equations ( ) and ( ) in equation ( ) gives the following result

(6.55)

or, equivalently,

(6.56)

Scaling the signal  on the dimensional axes in the domain  is equivalent to 
reciprocal scaling of the dimensional axes of the Fourier Transform in the  domain 
and dividing the amplitude of the Fourier Transform by the magnitude of the product 
of the scaling terms .

Combinations of Scalings and Rotations:

 It is easily shown that for any two nonsingular matrices

(6.57)

However, all scalings  satisfy

(6.58)

and all rotations are orthogonal matrices satisfying

(6.59)

so that, from equations ( ), ( ) and ( ),

(6.60)

It follows directly from equations ( ), ( ) and ( ) that scaling-followed-by-rotation 
is characterized by the transform pair

(6.61)

 Example 21    Scaling and Rotation of a 2D Signal
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Consider a 2D signal  as shown in Figure (6.11), having the 
transform pair  and where  is shown in Figure 
(6.11). 

FIGURE  6.11 2D Example of Scaling and Rotation

Now, let  be compressed by the the factor 2 on the  axis and 
stretched by the factor 3 on the  axis as shown in Figure  (6.12), followed 
by a 45 degree anticlockwise rotation, as shown in Figure (6.12). The corre-
sponding transformations in the domain  are given by

(6.62)

and

(6.63)

We note that

(6.64)

and

(6.65)

FIGURE  6.12 2D Compression and Scaling

x t1 t2,( )2d
x t( ) X jω( )⇔ X jω( )
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t2

t

Γ diag 1 2 3,⁄[ ]≡ 1 2⁄ 0
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2 0
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A simple geometrical interpretation is now possible. From the above 
expression and equation ( ), the Fourier Transform  is 
obtained from  by scaling the frequency axis  by the factor 2, the 
frequency axis  by the factor  and scaling the amplitude by  as 
shown in Figure . Finally, the Fourier Transform  is 
obtained by rotating the function in Figure  by 45 degrees anticlockwise, as 
shown in Figure .

FIGURE  6.13 Effects of Compression-Scaling and Rotation in the 2D Frequency Domain

MD Shift Operations

Consider that the MD signal  is shifted in the domain  by the vector  so 
that the resultant shifted signal is . Then,

(6.66)

Substituting  in the right side of the above equation and 
changing the variable and limits of integration gives

X jR2
1– t( ) det Γ⁄

X jω( ) ω1
ω2 1 3⁄ 3 2⁄

X jR2
1– t( ) det Γ⁄

x t( ) t b
x t b–( )

Fm x t b–( )[ ] x t b–( )exp jωTt–[ ]dt

t ∞=

∞

∫=

u t≡ b and– du dt≡
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(6.67)

so that

(6.68)

This is the MD Shift Property. It shows that the effect in the frequency domain of 
shifting a signal by the vector  is to multiply the MD Fourier Transform by the con-
stant exponential term ; this leaves the magnitude of the Fourier Trans-
form unaltered while subtracting  from its phase.

 Example 22    The 2D Shift Operation

Consider that the 2D signal  is shifted by the vector

(6.69)

as shown in Figure 3.15(a), corresponding to the shifted signal . Then, 
according to equation ( ), the magnitude spectrum of this shifted signal is the same as 
Figure $3.14(f)$ and is essentially unaltered by the shift operation. However, the 2D 
phase spectrum of Figure 3.15(a) is altered by the shift; the phase correction due to 
shifting is given by

(6.70)

which is the planar function shown in Figure $3.15(c).

FIGURE  6.14 The 2D Shift Operation

F
m

x t b–( )[ ] x u( ) exp jω
T

u b+( )–[ ]du

u ∞=

∞

∫=

exp jωTb–[ ] x u( )exp jωT u–[ ]du

u ∞=

∞

∫ exp jωTb–[ ]Fm x t( )[ ]= =

Fm x t b–( )[ ] exp jωTb–[ ]X jω( )=

b
exp jω

T
b–[ ]
ω

T
b

x R2 t( )

b b 1 b2[ ]T≡

x R 2t b–( )

ωTb– ω1b1 ω2b2+( )–=
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6.2 THE FOURIER TRANSFORM OF DISCRETE DOMAIN 
SIGNALS

The Fourier transform of discrete domain signals  is an important special 
case of the above continuous domain analysis, primarily because signal are most 
often processed as sampled versions of the continuous domain signal. The constraints 
that are imposed by the sampling process will be considered in the next chapter. For 
now, we assume the existence of an amplitude-bounded finite-energy uniformly-sam-
pled discrete domain MD signal . The Fourier transform of 
such a signal is given by

(6.71)

                  FOURIER TRANSFORM OF A DISCRETE-DOMAIN SIGNAL

which is usually written in the distance normalized form by assuming that  is 
unity for , giving

(6.72)

FOURIER TRANSFORM OF A DISCRETE DOMAIN SIGNAL HAVING 
UNIT DISTANCE BETWEEN SAMPLES

where . The corresponding inverse Fourier transform is 
given by

x n( )

x n1T1 n 2T2 … n, m Tm,,( )

X jω( ) x n1 T1 n2 T2 … n, m Tm,,( )exp j ω1 n1T1 ω2n2 T2 … ωmnm Tm+ + +( )–( )
n ∞–=

n ∞=

∑=

T i
i 1 2 … m, , ,=

X jω( ) x n( )exp jωTn–( )
n ∞–=

n ∞=

∑=

n n1 n2 … nm[ ]
T

=
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(6.73)

INVERSE FOURIER TRANSFORM OF A DISCRETE DOMAIN SIGNAL

The above transform pairs are written

(6.74)

A sufficient condition for the existence of  is that  be square summa-
ble and therefore satisfy equation ( ). Equivalently, all finite energy discrete domain 
signals have a Fourier transform.

6.2.1 Parseval's Theorem

The relationship between the energy of (generally complex) discrete domain sig-
nals in the  and the domain  is the discrete version of Parseval's Theo-
rem (equation ( ) ) and is given by

(6.75)

            PARSEVAL'S THEOREM IN THE DISCRETE DOMAIN

This relationship between the energy of a two-pair in  and the Fourier 
transforms of the two-pair signals in  is important because it is the basis for 
the design of the widely employed class of passive high performance discrete domain 
filter algorithms. Some of these algorithms are discussed in Chapter ? . With  set 
equal to  , the above result gives the energy of a single signal  as

(6.76)

and equation ( ) is also the MD energy density function of a discrete domain sig-
nal.

x n( ) 1

2π( )
m

--------------- X jω( )exp jωTn[ ]

ω π–=

ω π=

∫=

md
x n( ) X jω( )⇔

X jω( ) x n( )

dmn n dmn ω

E ∞( ) x n( )y∗ n( )
n ∞–=

n ∞=

∑≡ 1

2π( )m
-------------- X jω( )Y∗ jω( )dω

ω π–=

ω π=

∫=

dmn t
dmn ω

y n( )
x n( ) x n( )

E ∞( ) x n( ) 2

n ∞–=

n ∞=

∑≡ 1

2π( )m
-------------- X jω( ) 2dω

ω π–=

ω π=

∫=
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6.3 PROPERTIES OF THE MD FOURIER TRANSFORM

Many widely encountered operations on a signal  in  correspond to 
straightforward equivalent operations on the Fourier transform  in . 
Some of the more important of the operations are given below for the continuous 
domain transform pair in equation ( ). Similar relations hold for the continuous 
domain case, except where specifically noted.

Linearity Property  Given

(6.77)

then, for any complex numbers ,

(6.78)

This property allows the Fourier transform to be widely employed. For example, 
with , equation ( ) simply implies that the transform of the sum (that is 
superposition) of a set of signals may be obtained from the sum of their individual 
Fourier transforms. This is the Principle of Superposition and is fundamentally 
important and widely employed in the analysis and design of signal processing sys-
tems.

Complex Conjugation Property

  It follows directly from equation ( ) that

(6.79)

Real Part Properties

 It follows from equation ( ) that

(6.80)

and

(6.81)

Imaginary Part Properties 

 It follows from equation ( ) that

x t( ) dmn t
X jω( ) dmn ω

md
x1 t( ) X1 jω( ) and

md
x2 t( ) X2 jω( )⇔⇔

α and β

md
αx1 t( ) βx2 t( )+ αX1 jω( ) βX2 jω( )+⇔

α β 1≡ ≡

md
x∗ t( ) X∗ j– ω( )⇔

md
Re x t( )[ ] 1

2
--- X jω( ) X+ ∗ j– ω( )[ ]⇔

md
Re X jω( )[ ] 1

2
--- x t( ) x∗ t–( )+[ ]⇔
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(6.82)

and

(6.83)

Frequency Domain Properties for Real Signals 

 Given that the signal , then it follows from equation ( ) that

(6.84)

from which it follows directly that

(6.85)

and

(6.86)

Equation ( ) is the reflective conjugate symmetry property of real MD signals; 
symmetry properties are pursued in more detail in Section 3.??. A number of addi-
tional properties follow, for real signals , as a consequence of the reflective con-
jugate symmetry property (see Problem 3.??). It is easily shown that

(6.87)

and

(6.88)

implying that the magnitude Fourier spectrum  and the real part Fourier 
spectrum  of real signals have even symmetry about the frequency 
domain origin  in all  frequency variables . We shall 
later define this type of MD symmetry as centro-symmetry. Similarly,

(6.89)

implying that the imaginary part Fourier spectrum  has odd symmetry 
in all  frequency variables.

md
jIm x t( )[ ] 1

2
--- X jω( ) X– ∗ j– ω( )[ ]⇔

md
jIm X jω( )[ ] 1

2
--- x t( ) x– ∗ t–( )[ ]⇔

x t( )

x t( ) Rm∈

X jω( ) X∗ j– ω( )=

Re X jω( )[ ] Re X∗ j– ω( )[ ]=

Im X jω( )[ ] Im X∗ j– ω( )[ ]–=

x t( )

X jω( ) X∗ j– ω( )=

Re X jω( )[ ] Re X j– ω( )[ ]=

X jω( )
Re X jω( )[ ]

ω 0= m ω i i, 1 2 … m, , ,=

Im X jω( )[ ] I– m X j– ω( )[ ]=

Im X jω( )[ ]
m
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6.4 SYMMETRIES UNDER TRANSFORMATIONS OF THE 
SIGNAL    AND ITS FOURIER TRANSFORM

In many practical applications, the signal  is constrained by the nature of the 
problem at hand. In some applications, the signal may exhibit particular symmetries 
in  that lead to corresponding symmetries in the frequency domain . 
There are many different kinds of symmetry constraints that can be analyzed and that 
have been reported in the literature [Reddy, Rajan, Swamy]. In general, a signal  

is said to possess a symmetry, or identity symmetry, under the operation  and 

over the domain  if

(6.90)

If

(6.91)

The signal  is said to be antisymmetric under the operation . Similarly, 
if

(6.92)

then  is said to be conjugate symmetric under the operation  and if

(6.93)

then  is said to be conjugate antisymmetric under the operation  The 
above symmetries become reflective symmetries if they are valid when  is replaced 
by  on the right side. For example,  in equation ( ) possesses  reflective con-
jugate antisymmetry!

We shall consider some of the elementary symmetries of  that have practical 
implications in signal processing.

6.4.1 SYMMETRIES UNDER ORTHOGONAL TRANSFORMATIONS

Symmetries under the orthogonal transformations of equation ( ) are of particular 
interest; that is, the class of symmetries defined by

(6.94)

where, by orthogonality, (6.95)

Recall that the lengths of vectors are invariant under the orthogonal transforma-
tions of equation ( ) . Equation ( ) therefore corresponds to the class of symmetries for 

x n( )

x t( )

dmn t dmn ω

x n( )

Φ .[ ]

dmn t

Φ x t( )[ ] x t( )=

Φ x t( )[ ] x– t( )=

x t( ) Φ .[ ]

Φ x t( )[ ] x∗ t( )=

x t( ) Φ .[ ]

Φ x t( )[ ] x– ∗ t( )=

x t( ) Φ .[ ]
t

t– X jω( )

x t( )

x At( ) x t( )=

A A
T–

≡
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which there exists a length preserving real transformation  that leaves the signal 
unaltered. It follows directly from equations ( ) and ( ) that, for such transformations,

(6.96)

so that

(6.97)

That is, symmetry under an orthogonal transformation on  in its  

implies the identical symmetry under the same transformation on  in its 

domain .

There are many such transformations, some of which have particularly straightfor-
ward interpretations in the 2D and 3D cases. Some of them are considered in the fol-
lowing and some are considered in the problems at the end of this chapter. We 
consider symmetries under rotations and reflections.

 Example 23    2D Rotation by 180 Degrees

In the 2D case, geometrical rotation of  by 180 degrees 
in  corresponds to  in equation ( ). Then, the rotation 
matrix  is given by

(6.98)

so that

(6.99)

and

(6.100)

 Example 24    2D Rotation by 90 Degrees

In the 2D case, geometrical rotation of  by 90 degrees in  corre-

sponds to  in equation ( ). Then, the orthogonal rotation matrix  is 

given by

(6.101)

so that

A

md
X jω( ) x t( )⇔ x At( ) X jω( )

md
⇔=

X jω( ) X jAω( )=

x t( ) dmn t

X jω( )

dmn ω

x n1 n2,( )
dmn n θ1 π≡

R1 = A( )

A R1
1– 0
0 1–

= =

x t1 t 2,( ) x t– 1 t– 2,( )=

X jω1 jω2,( ) X j– ω1 j– ω2,( )=

x t1 t2,( ) dmn n

θ1 π 2⁄≡ R1 = A( )

A R1
0 1
1– 0

= =
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(6.102)

and

(6.103)

6.4.2 SYMMETRIES UNDER REFLECTIONS

Symmetries under reflections in  lead to particular symmetries in the corre-
sponding Fourier transform. The following symmetries under reflections are further 
examples of orthogonal transformations so that identical symmetries exist in both the 

 and the .

Reflection Symmetry of  About One Axis Suppose that the signal is equal 
to its own reflection  about the i th axis or dimension. Equivalently, the (generally 
complex) signal  has the property that it remains unaltered after a reversal in sign 
of the i th dimensional variable ; then

(6.104)

and it follows directly from equation ( ) and equation ( ) that

(6.105)

Clearly, symmetry of  about the i th axis in  corresponds to symmetry 

of its generally complex Fourier transform  about the same axis. The same 

result can be obtained by substituting  in equation ( 

) , where  is the i th entry. This type of symmetry is also referred to as twofold 
symmetry about the i th axis because clearly the signal is unaltered if geometrically 
folded, in the 2D case, about the corresponding axis.

Reflection Symmetry of  About All Axes (Centro-Symmetry) It follows, 

by extension of ( ) to all dimensions, that if  has reflection symmetry about  in 
all dimensions then

(6.106)

and

(6.107)

This corresponds to  in equation ( ). This type of symmetry is often 
referred to as centro-symmetry and we state that the signal has M-fold symmetry 

about the M axes in . It may be noted that the previously considered case of 2D 

x t1 t2,( ) x t2 t– 1,( )=

X jω1 jω2,( ) X jω2 j– ω1,( )=

dmn t

dmn t dmn ω

x n( )

x t( )
ti

x t1 t2 … t i … tm, , , , ,( ) x t1 t2 … t– i … tm, , , , ,( )=

md
x t1 t2 … ti … tm, , , , ,( ) X jω1 jω2 … j– ωi … jωm, ,, ,,( )⇔

x t( ) dmn t

X jω( )

A diag 1 1 … 1 … 1 1, , ,–, , ,[ ]=

1–

x t( )

x t( ) t

x t( ) x t–( )=

X jω( ) X j– ω( )=

A I–=

Rm
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180 degree rotational symmetry also corresponds, in this particular example, to 2D 
centro-symmetry.

Diagonal , Quadrantal and Octagonal Symmetries In the 2D case, the defini-
tion of reflection symmetry about the diagonal 45 degree line

(6.108)

is given by

(6.109)

as shown in Figure $3.??(b)$. The corresponding symmetry relationship in the 
frequency domain is

(6.110)

The definition of reflection symmetry about the diagonal -45 degree line

(6.111)

is given by

(6.112)

as shown in Figure $3.??(c)$. The corresponding symmetry relationship in the fre-
quency domain is

(6.113)

A 2D signal having symmetry about both the 45 and -45 degree lines satisfies both 
equations ( ) and ( ) and is said to have 2D diagonal symmetry.

A 2D signal is said to be Quadrantally Symmetric if it has twofold symmetry 
about both axes so that

(6.114)

as shown in Figure $3.??(d)$. Clearly, Quadrantal Symmetry implies centro-sym-
metry as well as symmetry in all four quadrants from which it follows that

(6.115)

A 2D signal is defined to have Octagonal Symmetry if it has both Quadrantal 
and Diagonal Symmetry, as shown in Figure $3.??(e)$, and therefore must satisfy

(6.116)

t1 t2=

x t1 t2,( ) x t2 t1,( )≡

X jω1 jω2,( ) X jω2 jω1,( )=

t 1 t2–=

x t1 t2,( ) x t– 2 t– 1,( )≡

X jω1 jω2,( ) X j– ω2 j– ω1,( )=

x t1 t2,( ) x t– 1 t2,( ) x t1 t– 2,( ) x t– 1 t– 2,( )≡≡≡

X jω1 jω2,( ) X j– ω1 jω2,( ) X jω1 j– ω2,( ) X j– ω1 j– ω2,( )≡≡≡

x t1 t2,( ) x t– 1 t2,( ) x t1 t– 2,( ) x t– 1 t– 2,( )≡≡≡

x t2 t 1,( ) x t– 2 t 1,( ) x t2 t– 1,( ) x t– 2 t– 1,( )≡≡≡≡
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The corresponding frequency domain symmetry is given by

(6.117)

6.4.3 REFLECTION SYMMETRIES OF THE MAGNITUDE SPECTRA OF REAL 
SIGNALS

In many practical situations, we are concerned with the reflection symmetries of 
real signals. When we come to consider the input-output behaviour of linear signal 
processing systems, for example, the signal  is often the real response of the sys-
tem to some real excitation. In such cases, it is often possible to conclude that the 
magnitude spectrum  possesses further symmetries in  that do not 

exist in . These symmetries can then be exploited to save effort in the design of 

systems. Essentially, one uses , the additional constraint in equa-
tion ( ).

 Example 25    Twofold Symmetric Magnitude Spectrumof a 2D Real Sig-
nal

We will show that twofold symmetry of the magnitude spectrum is 
sufficent to ensure quadrantal symmetry of the magnitude spectrum 
of a real 2D signal.

Suppose that a real 2D signal has the twofold symmetry in the 
dimension  so that

(6.118)

Then, by the general reflection Reflection Symmetry property,

(6.119)

from which it follows that

(6.120)

However, for real signals and from equation ( )

Then, comparing equation ( ) and equation ( ) it follows that

(6.121)

which proves quadrantal (four-fold axis) symmetry of the magni-
tude spectrum ; that is, its twofold symmetric about  

X jω1 jω2,( ) X j– ω1 jω2,( ) X jω1 j– ω2,( ) X j– ω1 j– ω2,( )≡≡≡

X jω2 jω1,( ) X j– ω2 jω1,( ) X jω2 j– ω1,( ) X j– ω2 j– ω1,( )≡≡≡≡

x t( )

X jω( ) dmn ω

dmn t

X jω( ) X∗ jω( )=

t1

x t1 t2,( ) x t– 1 t2,( ) x t1 t2,( ) R
2

∈,≡

X jω1 jω2,( ) X j– ω1 jω2,( )=

X jω1 jω2,( ) X j– ω1 jω2,( )=

X jω1 jω2,( ) X j– ω1 j– ω2,( )=

X jω1 jω2,( ) X j– ω1 j– ω2,( ) X j– ω1 jω2,( ) X jω1 j– ω2,( )== =

X jω1 jω2,( ) n1
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implies twofold symmetry about  and therefore quadrantal symme-
try. Note that quadrantal symmetry does not imply 2D diagonal sym-
metry.

 Example 26    Octant Symmetries of the Magnitude Spectrum of a Real 
3D Signal

In , an there are eight octant regions, corresponding to the four quadrants in 

. In  , they are the regions . It follows from 

the congugate symmetry property in equation ( ) that, for real signals , the 

magnitude spectrum  has reflective symmetry over each of the four 

pairs of opposite quadrants, as shown in Figure 3.??. For example, over the two oppo-
site frequency domain octants  and 

, the magnitude spectrum  has reflec-

tive symmetry.

6.4.4 SYMMETRIES IN THE DISCRETE DOMAIN CASE

It should be noted that discrete domain signals  cannot possess certain types 

of symmetries. For example, the rotational symmetries, , 

will only exist if  is such that . Clearly, if  corresponds to a 2D rotation 

of 90 degrees, the rotated samples  do indeed fall in , as shown in Figure 
3.??(a). However, for the 2D rotation of 45 degrees, the rotated samples do not fall in 

 , as shown in Figure $3.??(b)$, and therefore we cannot apply the symmetry 
result in equation ( ).

6.5 FREQUENCY DOMAIN PROPERTIES OF 3D LT SIGNALS

Consider the 3D LT duration unbounded signal , shown in 

Fig.??.?? and having the unit constant signal vector  and the 3D Fourier Transform 

. Further, consider a second related LT signal  as shown in Figure.??.?? 

, which is obtained from  by means of an appropriate rotation so that the direc-

tion of its constant signal intensity vector  points in the direction of the  axis; that 
is so that

(6.122)

as shown in Figure ??.?? . Let the 3D rotation that transforms  into  be given 
by the geometry of Figure ??.?? so that

(6.123)

n2

R3

R
2

dmn t t t1 0 t2 0 t3 0≥±,≥±,≥±{ }

x t1 t2 t3, ,( )

X jω1 jω2 jω3, ,( )

ω ω1 0 ω2 0 ω3 0≥,≥,≤{ }

ω ω1 0 ω2 0 ω3 0≤,≤,≥{ } X jω1 jω2 jω3, ,( )

x n( )

x n( ) x Rn( ) n Z
m

∈=

R Rn Z
m

∈ R

Rn Zm

Z
m

xl t t( ) t R3∈,

d

Xl t ω( ) x̂l t t( )

xl t t( )

d̂ t3

d̂ 0 0 1
T

=

d d̂

d R d̂=
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where  is the 3D rotation matrix in equation ( ).

Let the 3D Fourier transform of  be written  so that

(6.124)

However, the signal  has constant intensity in the direction of the  axis 

and therefore can not be a function of . We may therefore write

(6.125)

where  has been given in the subscript static to reflect the fact that, if 

 is considered as the temporal axis, then the signal is static with respect to time. It is 

a 2D function of only the spatial axes . From equations ( ) and ( ),

(6.126)

Writing

(6.127)

in equation ( ) and separating the three integrations over each dimension gives

(6.128)

Writing the Fourier transform of  as , the above 

equation becomes

(6.129)

Now, the term involving the integration is recognized from the 1D Forurier trans-
form pair

(6.130)

R

x̂ lt t( ) X̂ lt ω( )

X̂ lt jω( ) x̂l t t( )e j ωT t– td

t ∞–=

∞

∫=

x̂ lt t( ) t3

t3

x̂lt t( ) xs tat ic t1 t2,( )=

x static t1 t2,( )

t 3

t1 t2,

X̂ lt jω( ) xstatic t1 t2,( )e j ωT t– td

t ∞–=

∞

∫=

e
jωT t–

e
j ω1 t1–

e
jω2 t2–

e
j ω3 t3–

=

X̂ lt jω( ) e
jω3 t3–

t3d

t3 ∞–=

∞

∫ x static t 1 t2,( )e
j ω1 t1–

e
jω2 t2–

t1 t2dd

t1 ∞–=

∞

∫
t2 ∞–=

∞

∫=

x static t1 t 2,( ) X̂static ω1 ω2,( )

X̂ lt jω( ) X̂static jω1 jω2,( ) e
jω3 t3–

t3d

t3 ∞–=

∞

∫=

x t3( ) 1 1d⇔ 2πδ ω3( )≡ e
j ω3 t3–

t3d

t3 ∞–=

∞

∫=
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Substituting the right side of equation ( ) into equation ( ) gives

(6.131)

Therefore the spectrum  of a LT signal having a constant signal trajectory 

 in the direction of the  axis is equal to  everywhere in the pla-

nar region  and zero everywhere outside this plane. Clearly,  is uni-

planar , as shown in Figure ??.?? , with the normal to the plane in the direction of the 
 axis.

It is now a simple matter to find the Fourier transform of the general LT signal 
 by using the rotation property in equation ( ). From equations ( ), ( ) and ( ) ,

                         
?j before omega 3?? (6.132)

where

(6.133)

The dirac function  implies that the Fourier transform  of the 

general LT signal  is equal to  everwhere in the planar 

region  and equal to zero everywhere outside of this planar region. Clearly, 

 is a uniplanar signal. The plane  is written in terms of the above 

expression for  as

(6.134)

This plane is the region of support of the spectrum  of a general LT sig-
nal. The orientation of this plane is easily determined in terms of the orientation of 

 in its domain. Equation ( ) implies that the rotation  in  corresponds to the 

same rotation in ; therefore the uniplanar spectrum  undergoes the same rota-

tion into  as was applied to  to obtain . We therefore expect that 

equation ( ) corresponds to the plane , where  is the constant signal LT 
vector in the domain . This is easily proven from equations ( ), ( ) and ( ).

X̂ lt jω( ) X static jω1 jω2,( )2π δ ω3( )=

X̂ lt ω( )

d̂ t 3 X static jω1 jω2,( )

ω3 0= X̂l t ω( )

ω3

xlt t( )

Xl t jω( ) X̂ lt jR T– ω( ) X̂ lt jRω( ) X s tat ic jω1 ′ jω2′,( ) 2πδ ω3 ′( )= = =

ω1′ θ1ω1 θ1sin ω2–cos=

ω2 ′ θ2 θ1ω1 θ2 θ1cos ω2 θ2ω3sin–cos+sincos=

ω3′ θ2 θ1 ω1 θ2 θ1 ω2 θ2 ω3cos+cossin+sinsin=

δ jω3′( ) X lt jω( )

xl t t( ) Xstatic jω1 ′ jω2′,( )

ω3 ′ 0=

X̂l t ω( ) ω3′ 0=

ω3′ 0=

θ2 θ1sinsin( )ω1 θ2 θ1cossin( ) ω2 θ2cos( ) ω3+ + 0=

X lt jω( )

xlt t( ) R ω

t X̂lt ω( )

X̂l t ω( ) x lt t( ) x̂lt t( )

dTω 0= d
t
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In summary, LT continuous domain signals  possess a Fourier transform 

 that is uniplanar in a plane of the domain  and the plane has a nor-

mal given by the constant signal vector  of the signal .

The Finite Duration Case and Spectral Leakage Outside the Plane: It should 
be noted that our ideal analysis of the spectrum of an LT signal has assumed that 

 has the LT property throughout the entire region . In practical applications, 
the LT signal has a finite region of support along some (and usually all) of its dimen-

sions. This has the practical consequence that the corresponding spectrum  is 
not exactly contained in a plane; there will be some leakage of the spectrum outside of 
the plane and this leakage will decrease as the region of support becomes larger in all 
of the dimensions.

6.6 FREQUENCY DOMAIN PROPERTIES OF PW SIGNALS

Assume the Fourier transform pair

(6.135)

for the ideal plane wave signal , shown in Figure ?.?? for the 3D case. We 

want to determine the properties of the Fourier transform  of a plane wave. 
The following analysis is for the 3D case and is easily generalized to the mD case.

Consider the general 3D plane wave  given by

(6.136)

implying the direction of propagation vector  shown in Figure ?.?? . Clearly, 
there exists another plane wave  having the direction of propagation

(6.137)

and related to  by the appropriate rotation

(6.138)

Then, we have

(6.139)

or, equivalently,

(6.140)

x lt t( )

Xl t jω( ) ω R3∈

d x lt t( )

xlt t( ) Rm

X̂l t ω( )

Xpw jω( ) md⇔ xpw t( )

xp w t( )

Xpw jω( )

xp w t( )

xpw t( ) xplane l( ) dTt≡ l=

d
x̂pw t( )

d̂ d̂ 1 d̂2 d̂3[ ]
T

≡ 0 0 1[ ]
T

=

xp w t( )

d R d̂=

xpw t( ) xplane l( ) d̂
T
t≡ l=

x̂pw t( ) xplane l( ) t 3 l=( )≡ xplane t3( )=
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where  is shown in Figure ?.?? .

First, we define the 3D Fourier transform of the plane wave  

as , so that by definition

(6.141)

Now the term involving the 1D integration in the above equation is simply a 1D 
Fourier transform of the signal  over the variable  which, for brevity, we 

write as  where

(6.142)

 is simply the 1D Fourier transform of the signal in the direction of 
propagation of the plane wave. Combining the above two equations gives

(6.143)

The product of the two delta functions ensure that the region of support of 

 is confined to the region of  defined by

(6.144)

which is simply the straight line given by the  axis. That is, as one might 

intuitively expect, the plane wave , having its direction of propagation along 

the  axis, has a Fourier transform that is zero everywhere outside the  axis 

in . We may now apply the rotation property of the Fourier transform to arrive 
at the required Fourier transform  of the general 3D plane wave. Thus, using 
the 3D rotation vector

x̂p w t( )

x̂pw t( ) xplane t3( )=

X̂plane ω( )

X̂plane ω( ) xplane t3( ) e jωT t– td

t ∞–=

∞

∫=

e
jω1 t1–

td

t1 ∞–=

∞

∫ e
j ω2 t2–

t2d

t2 ∞–=

∞

∫ xplane t3( ) e
jω3 t3–

t3d

t3 ∞–=

∞

∫=

2πδ ω1( )2πδ ω2( ) xplane t3( )e
j ω3 t3–

t3d

t3 ∞–=

∞

∫=

xplane t 3( ) t3

Xplane ω( )

Xplane ω( ) xplane t3( ) e
jω3 t3–

t3d

t3 ∞–=

∞

∫≡

Xplane ω( )

X̂pw ω( ) 2πδ ω1( ) 2πδ ω2( )Xplane ω( )=

X̂p w ω( ) R
3

ω1 ω2 0= =

ω3

x̂pw t( )

t3 ω3

ω R3≡
Xpw jω( )
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(6.145)

and the corresponding frequency domain rotational relationship

(6.146)

we may write

(6.147)

where

(6.148)

Equation ( ) is the required result, expressing the Fourier transform of the general 
3D plane wave  in terms of the 1D Fourier transform  of the sig-

nal . The product  ensures that  is zero everywhere 
outside of the rotated line defined by

which is a line passing through the origin that is normal to the plane given by

In terms of the frequency components of , this plane is given by

 which is equiva-

lent also to the plane

 with , the direction 

of propagation of  in its domain.

In summary, we have shown that a general 3D plane wave, given by equation 
( ) , and therefore characterized by  and its direction of propagation , 

R
θ1cos θ1sin– 0

θ2 θ1sincos θ2 θ1coscos θ2sin–

θ2 θ1sinsin θ2 θ1cossin θ2cos

=

ω R ω̂=

Xp w ω( ) 2πδ ω̂1( )2π δ ω̂2( )Xplane ω̂3( )=

ω̂1 θ1cos( )ω1 θ1sin( )ω2–=

ω̂2 θ2 θ1sincos( )ω1 θ2 θ1coscos( ) ω2 θ2sin( ) ω3–+=

ω̂3 θ2 θ1sinsin( )ω1 θ2 θ1cossin( )ω2 θ2cos( )ω3+ +=

Xpw ω( ) Xplane ω( )

xplane l( ) δ ω̂1( )δ ω̂2( ) Xp w ω( )

ω̂1 ω̂2 0= =

ω̂3 0=

ω

ω̂3 θ2 θ1sinsin( )ω1 θ2 θ1cossin( ) ω2 θ2cos( ) ω3+ + 0= =

d
T

ω 0= d θ2 θ1sinsin( ) θ2 θ1cossin( ) θ2cos( )[ ]
T

=

xpw t( )

xplanar l( ) d
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has a 3D Fourier transform  having a region of support that is a straight 
line through the origin. The direction of this line is determined by the fact that it 

is normal to the plane ; therefore the direction cosines of the line are the 
components of . The value of  along the straight line is given by the 1D 

Fourier transform  , which is the 1D Fourier transform of the 1D 

function .

??in preceeding paragraph subscript ’planar’ is used but previously the subscript 
’plane’ was used???

Xpw ω( )

d
T

t
d Xp w ω( )

Xplanar ω( )

xplanar l( )


