
294 IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-20, NO. 3, MAY 1973 

REFERENCES 

“1 G. S. Moschytz, “Active RC filter building 111 

PI 

I31 

]41 

PI 

I61 

171 

blocks using fre- 
quency emphasizing networks,” IEEE J. Solid-State Cikits, 
pp. 59-62, June 1967. 
S. K. Mitra, Analysis and Synthesis of Linear dctive Networks. 
New York: Wiley, 1969, pp. 161-207. 
A. G. I. Holt and M. R. Lee. “Sensitivitv comoarison of active- 
cascade and inductance simulation schemes,” ‘Proc. Id Elec. 
Eng., vol. 119, pp. 277-282, Mar. 1972. 
R. A. Friederson, “Computer-aided design of practical RC active 
filters,” presented at the 1972 IEEE Int. Symp. Circuit Theory, 
North Hollywood, Calif., Apr. 1972. 
R. L. Adams, LiOn reduced sensitivity active filters,” in Proc. 
14th Midwest Symp. Circuit Theory, pp. 14.3-1-14.3-8. 
J. Tow and Y. L. Kuo, “Coupled-biquad active filters,” pre- 
sented at the J972 IEEE Int. Symp. Circuit Theory, North 
Hollywood, Cahf., Apr. 1972. 
W. J. Kerwin, L. P. Huelsman, and R. W. Newcomb, ‘State 
variable yynthesis for insensitive,.integrated circuit transfer 
F9T7tt’ons, IEEE J. Solid State Circuits, pp. 114-116, Sept. 

J. Tow, “Active RC filters-A state-space realization,” Proc. 
IEEE, pp. 1137-1139, June 1968. 
- “Design formulas for active RC filters using operational 
amplifier,” Electron. Lett., pp. 339-341, July 24, 1967. 
D. Akerberg and K. Mossberg, “Low-sensitivity easily trimmed 
standard building block for active RC filters,” Electron. Lett., 

1111 

[121 

]I31 

[I41 

1151 

[I61 

1171 

WI 

P91 

pp. 528-529, Oct. 16, 1969. 
L. C. Thomas, “The biquad: Part I-Some practical design 
considerations,” IEEE Trans. Circuit Theory, vol. CT-l!, pp. 
350-357, May 1971. 
-, “The biquad: Part II-A multipurpose active filtering 
system,” IEEE Trans. Circuit Theory, vol. CT-18, pp. 3.58-361, 
May.1971. 
A. G. J. Holt and J. I. Sewell, “Active RC filterAEmploying a 
single operational amplifier to obtain biquadratic responses,” 
Proc. Inst. Elec. Eng., pp. 2227-2234, Dec. 1965. 
T. A. Hamilton and A. S. Sedra, “A singlelamplifier biquad 
active filter,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 398- 
403, July 1972. 
M. A. Soderstrand, “Sensitivity studies of multi loop active RC 
filters,” M.S. thesis, Univ. of California, Davis, Sept. 1969. 
N. Fliege, “Complementary transform of feedback systems,’ in 
Proc. IEEE 1972 Int. Symp. Circuit Theory (North Hollywood, 
Calif.), pp. 61-65, Apr. 1972. 
P. R. Geffe, “A Q-invariant active resonator,” Proc. IEEE 
(Lett.), p. 1442, Aug. 1969. 
M. A. Soderstrand and S. K. Mitra, ‘Ver 

r 
low sensitivity 

canonic active RC filter,” Proc. IEEE (Lett. , pp. 2175-2176, 
Dec. 1969. 
-, “Sensitivity analysis-of third-order filters,” Int. J. Elec- 
tron., pp. 265-272, Mar. 1971. 

[ZO] -, “Gain and sensitivity limitations of active RC filters,” 
IEEE Trans. Circuit Theory (Special Issue on Active and Digital 
Networks), vol. CT-18, pp. 600-609, Nov. 1971.’ 

Tunable RC-Active Filters Using Periodically 

Switched Conductances 

L. T. BRUTON AND ROGER T. PEDERSON 

Abstract-The realization of electronically tunable RC-active fil- 
ters is achieved by the use of periodically switched conductances 
within the filter. A method of analysis of RC networks containing 
periodically switched conductances is given, which is based on the 
impulse response of the network at a capacitance. The use of periodi- 
cally switched conductances to tune RC-active filters has several 
practical advantages, such as eliminating the need to carefully match 
independently adjustable network elements and being able to con- 
trol a transfer function with one timing waveform. This method of 
electronically tuning X-active filters is illustrated by several de- 
signs. . ‘. 

I. INTRODUCTION 

N RECENT years, tunable filters have come to play 
an ever increasing role in signal processing. Tunable 
active filters have found applications in such areas 

as the analysis of seismic data and adaptive filtering of 
signals from noisy communication channels. In realizing 
a tunable filter, one or more elements must be varied 
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in order to vary the frequency response of the filter. 
Elements such as resistors and low-valued capacitors 
can be varied mechanically or by using specialized de- 
vices such as raysistors and varicap diodes. These 
methods present practical problems, especially where 
high accuracy is important. 

Tunable system functions have been realized by using 
several techniques such as the N-path filter approach 
MY switched capacitor network [2], and resonant 
transfer circuits. Several authors [3]-[S] have proposed 
methods of electronically tuning a filter transfer func- 
tion by periodically switching network elements. The 
coefficients of the transfer function become functions 
of the pulsewidth-to-period ratio of the switched ele- 
ments. Edwards [3] and Kaehler [4] have applied this 
method to first-order RC networks in which the cutoff 
frequency of the RC filter was tuned by varying the 
pulsewidth-to-period ratio of the switched. resistances. 
Girling and Good [s] h ave shown that this technique 
can be used to tune the cutoff frequency and/or band- 
width of higher order active filters, and it has been 
shown that’impedance scaling, using analog multipliers, 
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can be used to electronically tune RC-active filter struc- 
tures [4]; [6]. 

Networks containing periodically switched elements 
have been analyzed by several methods. Desoer [7] has 
given a systematic method of analyzing a linear net- 
work containing a switch by using Bashkow’s [S] “A- 
matrix” formulation of network equations. The state- 
space approach has been used by Sun and Frisch [9] to 
analyze networks containing periodically switched con- 
ductances and Kaehler [4] has used the difference 
equation approach to analyze simple RC networks. 
These methods tend to require a great deal of algebraic 
manipulation, especially for higher order systems. 

It is our aim to present a relatively simple method of 
analysis of lie-active networks containing periodically 
switched conductances and to apply this method to the 
frequency scaling of network functions. The proposed 
method is based on the evaluation of the response of a 
capacitance voltage to the application of an impulse 
8(t) at the input port of the network. It is shown that 
by using periodically switched conductances, this im- 
pulse response can be amplitude and time scaled; hence 
the transfer function can be frequency scaled. 

hereafter referred to.as the scaling factor. In some net- 
works it is not difficult to identify KG1 . . . KGN by in- 
spection. However, the general problem of identifying 
them is as follows. Frequency scaling a transfer func- 
tion A(s) to give a scaled transfer function A(s/K) re- 
quires that 

where K is the scaling factor. In general, the corre- 
sponding impulse response L(t) must be of the form 

A(t) = K 2 mjeniKt (2) 
j=O 

where the coefficients aj, bi, mj, and nj are independent 
of K. The conductance set KG1 . . . KGN is chosen 
such that (1) [and hence (2) ] is satisfied. We assume 
that KG1 . . . KGN is identified and wish to consider 
the effect on the transfer function of periodically 
switching each of these conductances such that K is a 
discontinuous discrete periodic time function K(t) with 
average value K. 

If the output voltage of the network is not available B. F requency Scaling Using Periodically Switched Con- 
across a capacitance element, then, in general, the re- ductances 
quired frequency scaling does not occur. For example, 
the class of high-quality RC-active ladder realizations 
often consist of an active network embedded between 
resistive terminations and it will be shown that the 
periodically switched conductance approach does not 
always achieve frequency scaling. Two methods are 
proposed for achieving switched-conductance fre- 
quency scaling. The first is to scale all branch admit- 
tances by s such that the output appears across a 
capacitance [lo]. The second method requires the ad- 
dition of a low-pass filter at the output which effec- 
tively places the new output across a capacitance. 

An active filter realization which is to be frequency 
scaled by periodically switched conductances should be 
a low-sensitivity structure in order to avoid the problem 
of small errors in the switched conductances causing 
large errors in the network function. For this reason, 
equiterminated RC-active ladder structures [ll] have 
been chosen to realize frequency-scaled network func- 
tions using periodically switched conductances. Two ap- 
proaches have been described for the design of RC- 
active ladder filters: the inductance simulation ap- 
proach [ll]-[13] and the DCR [lo] ladder networks. 

Consider the conductance set to be periodically 
switched such that they are given by K(t)Gl . . 1 K(t)GN, 
where 

K(t) = Kl[u(t - nT) - u(t - nT - r)] 

+ K?[u(t - nT - T) - u(t - (n + l)T)], 
fl= - co . . . 03. (3) 

A sketch of K(t) is given in Fig. l(a) and it is easily 
shown that 

1 . (4) 

We define two impulse responses of the time-in- 
variant (i.e., unswitched) version of Fig. l(b), given by 

Xc&> = KlL(KlO, K(t) = Kl 

and 
Xc,(t) = KA(Kd), K(t) = Kz (5) 

where we constrain the output voltage to be across a 
capacitance within the network as shown in Fig. l(b). 

The impulse response of a time-invariant system con- 
taining conductances KG1 . . . KGN is defined as 

I I. FREQUENCY-SCALING NETWORK FUNCTIONS A,(t). Thus 

A. Frequency Scaling Using Continuously Variable Con- X,(t) = KX,(Kt). (6) 

ductances We have so far defined impulse responses of the time- 
There are many RC-active realizations in which the invariant systems. The impulse response of the time- 

transfer function may be continuously frequency scaled varying system with conductance K(t)Gl * . . K(t)GN 
by means of a set of continuously vafiable ‘conduc- is defined as h,(t, T). We wish to prove that 
tances. This conductance set will’ be denoted by 
KG1 . . . KGN, where K is a dimensionless variable, 

lim h,(t, T) = KX,(Kt) 
T-0 
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Fig. 1. (a) Time variation of switched conductances. (b) Time- 

varying RC-active network. 

where there is an implied functional dependence of 
h,(t, T) on r and r < T. 

Prooj’: Consider finite T such that A,,(t) and A,,(t) are 
accurately represented by a piecewise linear approxima- 
tion obtained by interconnecting samples &,(nT) and 
L(nT) as shown in Fig. 2(a). Note that we wish to 
prove that a piecewise linear curve h,(t, T) correspond- 
ing to Fig. l(b) will approximate to the curve KX,(Kt) 
that is sketched in Fig. 2(a). 

At time t = O+, immediately after the application of 
b(t) to the input of Fig. l(b), K(t) =Kl. Thus for 
O<t<7, h,(t, T) =x,,(t). Since we can represent A,,(t) 
by a piecewise linear approximation, then the point A 
in Fig. 2 (a) is given by 

hc(T, T) = Xcl’(0)~. (8) 

During time r <t < T, the conductance set becomes 
K,Gl . + * KzG~ and it is necessary to evaluate h,(t, T) 
during this time. 

r<t<T 

At point A, or time r on the h,(t, T) curve, we know 
that K(t) changes instantly from KI to Kz. However, 
since Vc(t) is across a capacitor, it cannot change in- 
stantaneously. Thus at time r+, immediately after 
switching, hc(T+, T) is equal to Xcr’(0)r. However, we 
now require the new slope of h,(t, T) during the time 
r < t < T. The initial conditions of the network at time 
r+ are uniquely defined by the capacitance voltages. 
This same set of capacitance voltages could have been 
obtained at time (Kl/K& as follows: By applying an 
impulse (KI/K.JS(t) to the unswitched network given 

h,(t) 

h(t) 
,_---_ 

t 
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t 
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Fig. 2. (a) Impulse responses of RC-active network. (b) Impulse 

response during the first two periods of K(t). 

by K(t) =Kz. This would result in a scaled impulse re- 
sponse of the form KJ,(Kzt) [a time-scaled version of 
KIX,(Klt)] and the derivative of this curve at time 
(K1/K2)7 is given by (KJKI)X,,‘(O). Thus the slope AB 
is given by (K2/KI)Xcl’(0) and we conclude that we can 

find h,(T) by vector addition of G and z. This is 
shown schematically in Fig. 2(b). Vector addition gives 

h,(T, T) = X,,‘(O)T + (T - 7) $ hel’(O) (9) 
1 

which results in an average slope for the time 0 <t < T of 

h,‘(O, T) = 

TX,,‘(O) + (T - 7) -$f b’(O) 

T 

c 
= L’(O) 

1 

r+(T+ 1 T * 
(10) 

Now 

X,,‘(O) = Kl f XC(KlO = K&‘(O). (11) 
t=0 



BRUTON AND PEDERSON: TUNABLE RC FILTERS 297 

Thus (10) can be written in the form Now the slopes BC and CD are simple related by 

h,‘(O, T) = X,l(O) % 
[ 

7 + (T - T) $ 1 (12) 
1 

and substituting (4) into (12) gives 

h,‘(O, T) = K&‘(O). (13) 

The value of h,( T, T) in terms of the slope h,‘(O) is given 
by 

h,(T, T) = Th,‘(O, T) = TKA,‘(O) (14) 

which can be rewritten as 

h,(T, T) = KA,(KT). (15) 

Consider now the next time period T< t < T+r in which 
the conductance set becomes KlGl * * * KIG~. 

T<t<T+r 

At point B on the h,(t, T) curve, K(t) switches in- 
stantly from Kz to K1. Since h,(t, T) is across a capacitor 
as described previously, h,(T+, T) = KX,(KT). We now 
need the slope of h,(t) during the time T<t < T-r. The 
capacitances in the network define the initial conditions 
as described for the switching t =r. The unswitched net- 
work with K(t) = K1 would have the same set of capaci- 
tance voltages at time (K/Kl)(T) if an impulse of am- 
plitude (K/K1)6(t) had been applied at t = 0 to the net- 
work having the conductance set KlGl . . . KIGN. This 
would again result in ‘a scaled impulse response of the 
form KA,(Klt) with a derivative at time (K/KI)T of 

The slope BC is then given by 

KL’(Kd) ( L=KT/K1. 

T+r<t<2T 

At time T+r or point C, K(t) again changes in- 
stantly from K1 to K,. Since the impulse responses are 
assumed piecewise linear, the slope at (T+T)+ is de- 
fined for K(t) = Kz at t = T. Following the previous dis- 
cussion, the network has,the same capacitance voltages 
at t = (K/K,)T as if an impulse of value (K/K2)6(t) is 
applied at t = 0. This gives a scaled impulse response of 
KA,(K,t) having a derivative at t = (K/K,) T of 

KL’ WsO ( t=(K/K2)T. 

The slope of h,(t) during interval T+r < t <2T is 

CD = KL’(Kzt) I~--(K,K~)T. 

The value of h,(2T) is then given by the vector addition 

of 2 and G and the value of t = T to yield 

h&T, T> = hc(T, T) + dOc’(Kd) It=(K,K,)T 

+ (T - T)KL’(K~) (t=(K,K,)T. (16) 

KL’(Kzt) ) t=(K/K*)T = 2 KAc’(Kd) 1 t=KT,K1 (17) 

because the values of the impulse responses at the times 
given in (17) are equal. Using (17)) the average slope 
BD can be evaluated as follows: 

h,(T, T) = 

; ;T - 7)K 3 L’(KIt) I~=-(K,R~IT] (18) 

l[ 1 h,‘(T, T) = KL’(&t) \~-wK~P 

r+(T--r)% 

T ’ 
(19) 

The derivative of L(Klt) evaluated at t = (K/Kl)T 
takes the form KJ,‘(KT), where the constant KI is a 
result of the differentiation with respect to t and has 
been moved outside the derivative X’(KT). Thus (19) 
can be rewritten in the form 

h,‘(T, T) = K%,‘(KT) (20) 

which represents the derivative of a continuous impulse 
response KA,(Kt) evaluated at t = T, where the con- 
stant K caused by differentiation has been removed 
from X,‘(Kt). This means that at point D, the response 
is on the desired average response Kh,(Kt). Now, it has 
been shown that the impulse response h,(t, T) lies on 
the curve KX,(Kt) at times 0, T, and 2T. The argument 
can be continued indefinitely to show that, at all suc- 
cessive times nT, the response h,(t, T) is on the re- 
quired continuous average curve given by the un- 
switched conductance set KGI * * * KGN. Thus (5) is 
valid and the proof is complete. The implication of t$e 
proof is important because it follows that (1) and (2) are 
su.cient to describe the network transfer function if the 
output voltage is across a capacitor and if the impulse 
responses A,,(t) and A,,(t) are accurately represented by the 
piecewise linear approximation. This latter constraint 
implies a maximum bandwidth limitation on 1 H,(jti) ( 
and does not allow discontinuities in A,,(t) and A,,(t). 
Clearly the switching frequency l/T must be as high as 
possible. Having proved the validity of (7), we assume 
in subsequent sections that h,(t, T) has arbitrarily small 
T and may be written as h,(t). If the discontinuity in 
K(t) does not coincide with the application of the im- 
pulse s(t), a more complex proof is necessary. 

C. Noncapacitance Output Voltage 

The analysis thus far has required the output to be 
across a capacitance. If a periodically switched RC- 
active network does not satisfy this constraint, we must 
consider other possibilities for obtaining a frequency- 
scaled network response. One method is to add a low- 
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TABLE I 

GIC REALIZINGFREQUENCY-SCALED IMPEDANCES 

Z3 z4 

Non- Frequency-Scaled 
Switched Impedance as 

Impedance Switched Conductance Proved in Section II 

Capacitive Impedance 

Inductive Impedance 

FDNR 

Gl 

Gl 

1 - 
SC1 

GZ 

1 - 
SC2 

G2 

1 - 
SC3 

Ga 

1 

SC3 
- 

G4 

G4 

G4 

G&r 

SGGIGS 

SW4 

GGaGs 

G&4 
s2C,GGs 

K(t)Gz or K(t)G4 

K(t)Gz or K(t)Ga 

K(t)Gz and K(t)G4 

KGzGr -- 
sCsGlGs 

sC2G4 

KGlGaGs 

KG& 
sGGGa 

Note: Zs(s)/Vz(s) = Gj. 

pass filter at the output of the network such that the 
new output appears across a capacitance and the con- 
straints of the proof are satisfied. 

III. REALIZATION OF ELECTRONICALLY 

TUNABLE ACTIVE FILTERS 

In making an electronically tunable active filter, a 
choice must be made as to which RC-active filter struc- 
ture should be used. RC-active equiterminated ladder 
structures have successfully been used to realize high- 
quality transfer functions. Several approaches have been 
used, namely the inductive simulation approach [12], 
[131, [15], [161, and impedance scaling an LCR ladder 
network to a topologically similar DCR [lo] ladder net- 
work having the same voltage transfer function. 

Two realizations of RC-active ladder structure have 
been described; consider now how these structures can 
be used to realize tunable active filters. A tuned or 
frequency-scaled version of an LCR- or simulated LCR- 
active ladder filter has a transfer function of the form 

where K is the scaling parameter. In a similar fashion, 
a tunable DCR ladder filter has a transfer function of 
the form [6] 

TDCR ($) = TDCR (-&J c) Ri). (22) 

It is noted that the frequency-scaling parameter KZ 
appears with the D element, and thus the D element must 
be scaled by K2 to achieve frequency scaling of the 
transfer function. In (21) and (22) the frequency scaling 
of the transfer function is achieved by frequency scaling 
the frequency-dependent elements. The question now 
arises as to how periodically switched conductances 
can be used to frequency scale the network elements. 
The inductances, capacitances, and frequency-depen- 
dent negative-resistance (FDNR) or D elements can 
all be realized by generalized impedance converters 
(GIG’s), and thus methods of frequency scaling the in- 
put impedance of the GIG’s are now considered. 

Iin 

(a) 

I I I 
all copociton in pF; all rasistors in Kn. 

(b) 

Fig. 3. (a) GIC realization of a bandpass filter using inductance 
simulation. (b) Practical realization of a bandpass filter using 
inductance simulation. 

A. Frequency Scaling GIG’s 

The transmission matrix (T) and input impedance 
(Zin(s)) of a GIC are given by 

1 0 

T = ZzZ4 [ 1 Vin(S) 2123 V!Z(S) 

O- 
&(s) = - = - - 

Iin (S) z2z4 12(s) 
(23) 

ZlZ3 

where impedances Zr, Z2, Z3, and 24 are shown in Fig. 
3(a). Now if Zin(s) is to be frequency scaled by pe- 
riodically switched conductances, then one or more of 
Zr, Z2, Z3, and Zq must be periodically switched con- 
ductances. 

The impedances in ,(23) which must be periodically 
switched conductances in order to realize a frequency- 
scaled capacitive impedance, inductive impedance, and 
FDNR are shown in Table I. 

It has been shown in Table I that a GIC can be used 
to realize a frequency-scaled capacitive impedance, in- 
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ductive impedance, and FDNR. We shall now consider 
several examples of practical tunable filters which are 
realized using these frequency-scaled impedances. 

IV. PRACTICAL REALIZATION 

Practical verification of the performance predicated 
for the periodically switched RC-active ladder structures 
is illustrated by considering several tunable active 
filters. 

A. Tunable Bandpass RC-Active Filter 

The purpose is to illustrate our method of frequency 
scaling a transfer function by the design of a tunable 
bandpass active filter using periodically switched con- 
ductances to frequency scale or tune a conventional 
GIC realization [13]. Consider the network shown in 
Fig. 3(b) in which a GIC is used to simulate an in- 
ductance in a simple second-order bandpass filter. The 
transfer function of the network is given by 

Vob> GlGG -= 
Vin (S) C1CzG4s2 

+ 
G,CzG4 

(24) 

---SSl 
GGG GGGs 

which we wish to frequency scale by use of periodically 
switched conductances. Following the theory of Section 
II, we find the output is across a capacitance and hence 
it is only necessary to find those conductances which 
frequency scale the transfer function. From (24), it is 
clear by inspection that the continuous conductances 
G,, Gr, and G3 may be of the form KG,, KG1, and KG3 
to give continuous frequency scaling. Thus the pe- 
riodically switched conductances are easily identified 
as K(t)G,, K(t)Gl, and K(t)GS. Then the transfer func- 
tion of this periodically’switched network is obtained 
from (24) and given by 

GsG4Cz s ___- 
W&s K 

C1C2G4 s= GsG4Cz s 
(25) 

GIGIGB K2 ’ G1G3Gr, K ’ 

A practical verification of (24) was obtained by con- 
structing this periodically switched filter as shown in 
Fig. 3(b). Practical values of circuit elements are given 
in the design. The switched conductances are realized 
by connecting two conductances in parallel and switch- 
ing one in and out of the circuit with an FET switch 
[18]. A floating FET switch is used, in which a diode 
is placed in series with the gate as shown in Fig. 3(b), 
to stop the switching waveform from interfering with 
the analog voltage being switched. A speed-up capacitor 
is placed in parallel with the diode to ensure that the 
FET switches on rapidly. 

The frequency response of the bandpass filter was 
measured for several values of pulsewidth-to-period 

3200. Tunobh Bondpar. Fllter 

2800. 

2600. 

3400 - .i 

2400. 

2200 - 

,200o. I -.o-- Theory 

5 le.00 -x- Experimental 

0” woo. 
c 

g 
z 

1400. i 1200. . 
I; 

1000. E 800. “‘A 

3 600. 

400. 

200. 

a I 234567ft910 
T 
r 

Fig. 4. Center frequency versus T/T for the tunable bandpass filter. 

ratio (r/T). The value of r/T was varied by adjusting r 
for a constant period T of 12 ps. The variation of the 
center frequency of the response of the bandpass re- 
sponse of T/r in the range l-10 was measured and ap- 
pears in Fig. 4 along with the theoretical curve. The 
theoretical curve was evaluated by calculating the 
average value of the switched conductances and hence 
the scaling factor K. The scaling factor was then applied 
to determine the center frequency at a given value of 
T/r, with respect to the value at T/T = 1.0. The band- 
pass filter was designed to have a Q of 50, and the 
measured value was 46. The tuning of the center fre- 
quency did not affect the Q of the filter. We conclude 
that a high-quality tunable bandpass active filter may 
be realized using periodically switched conductances. 

B. Tunable Low-Pass RC-Active Ladder Filter 

A tunable low-pass ladder filter is considered, where 
frequency scaling and hence variation of the cutoff 
frequency, is achieved using periodically switched con- 
ductances. A third-order Butterworth low-pass filter is 
constructed using DCR networks as shown in Fig. 5(a). 
We have used a version in which the terminating ca- 
pacitances are simulated using GIG’s and the resultant 
filter is similar to that proposed by Gorski-Popiel [14]. 
From (22) it is seen that the transfer function of the 
DCR network is frequency scaled if the impedance of 
the D element and capacitances are frequency scaled. 
It has been shown in the preceding section that the in- 
put impedance of a GIC may be frequency scaled. Thus 
a frequency-scaled low-pass filter can be realized as 
shown in Fig. 6 where two periodically switched con- 
ductances realize the D element and one switched con- 
ductance is required for each terminating GIC. The 
nullors in the GIC [Fig. 3(a)] are replaced by opera- 
tional amplifiers (MCH1439G), and 0.66 Ma resistors 
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Fig. 5. (a) Tunable RC-active filter realizing a third-order Butter- 

worth response. (b) Magnitude response of the tunable third- 
order Butterworth low-pass filter. 
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Fig. 6. Cutoff frequency versus T/T for third-order Butterworth 
low-pass filter. 

have been added in parallel with the capacitors to pro- 
vide the necessary bias currents for the operational 
amplifiers. The network is made tunable by periodically 
switched conductances. The output V,(t) is across a 
conductance element G. However, low-pass filtering is 

not necessary because the network meets the criterion 
that the output voltage V,(t) is related to a capacitance 
voltage Vc(t) across C’ via continuous conductances 
G’ and G. (Had we chosen to time vary G’ instead of 
G” in Fig. S(a), then the output V,(t) would require 
low-pass filtering). 

The response of this filter was measured for several 
pulsewidth-to-period ratios (r/T) in which r was varied 
with a constant T = 12 PLS and is shown in Fig. 5(b). 
As can be seen, the shape of the response is unaltered 
by switching, but the network is frequency scaled. The 
cutoff frequency was measured for T/r in the range 
l-10 and is shown in Fig. 6. The theoretical cutoff fre- 
quency is evaluated by calculating the average value of 
the switched conductances and then using this value 
to determine the scaling factor K. This scaling factor K 
is then used to obtain the cutoff frequency of the 
switched network from its value at T/r = 1.0. It is seen 
that the theoretical and measured responses are in very 
good agreement, verifying the preceding method of 
analysis of periodically switched networks containing 
GIC’s. 

This method of tuning ladder filters is particularly 
attractive because it may clearly be extended to high- 
order equiterminated structures, where, in general, the 
time-varying conductances K(t)G may be of identical 
value. Furthermore, K(t) is identical for each con- 
ductance K(t)G because a single timing waveform de- 
termines all conductances K(t)G. Thus tuning of the 
filter response by variation of r/T (and hence K) will 
not introduce mismatch between the switched con- 
ductances. This is a practical advantage because inde- 
pendently adjustable elements, using continuous elec- 
tronic tuning, require carefully matched nonlinear ele- 
ments such as analog multipliers [6]. 

V. CONCLUSIONS 

A method of realizing high-quality electronically 
tunable active filters employing periodically switched 
cdnductances is presented. A simple method of analysis 
of networks containing periodically switched conduc- 
tances is given and applied to several active-filter 
realizations. In particular, it is shown that the average 
input impedance of generalized impedance converters 
can be frequency scaled by varying the pulsewidth-to- 
period ratio of periodically switched conductances 
within the network. 

Two practical tunable active ladder filters are con- 
sidered: a bandpass filter realization employing the in- 
ductance simulation methods and a third-order Butter- 
worth low-pass filter realized using the DCR network 
approach to the design of active ladder structures. The 
variation of center frequency in the case of the bandpass 
filter and the cutoff frequency in the case of the low- 
pass filter as a function of the pulsewidth-to-period 
ratio (7/T) is accurately predicted, indicating good 
agreement between theory and practice. Periodically 



IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-20, NO. 3, MAY 1973 

switched conductances provide a means of tuning net- 
work functions accurately and should prove to be very 
useful in low-frequency applications. The possibility 
now exists to incorporate electronically. tunable low- 
sensitivity ladder structures into adaptive filter sys- 
tems. Preliminary work has shown that the noise pro- 
duced by these periodically switched ladder structures 
is comparable to that of the conventional untuned 
realization, but the signal-handling capability and 
hence, dynamic range, is reduced by an amount that is 
approximately proportional to the ratio Kr/K and 
therefore the tuning range. It is hoped that further 
work will reveal the limitations to this method of 
electronically tuning high-quality RC-active ladder 
filters. 
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On the Analysis and Realization of Cascaded Transm’ission- 

Line Networks in the Time Domain 

KWAME A. BOAKYE AND OMAR WING 

Abstract-The time-domain analysis and realization of cascaded, 
uniform, lossless transmission-line networks are considered. A Hes- 
senberg matrix L is defined in terms of which the reflected impulse 
response and the transmitted impulse response are expressed in 
closed form. A realization scheme is presented for determining a net- 
work whose reflected impulse response is a specified sequence of 
impulses. 

I. INTRODUCTION 

HE TIME-DOMAIN behavior of networks con- 
sisting of cascaded sections of uniform, lossless 
transmission lines is discussed. Such networks 
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result from equivalent circuit representation in micro- 
wave network theory, optics, and acoustics. The analysis 
and synthesis of these networks have received much 
attention in the frequency domain [l]-[8], but rela- 
tively little in the time domain [9], [lo], [13], [14]. 

Here, by using signal flow graph techniques, the co- 
efficients of the time-domain system functions are ob- 
tained, in closed form, as a function of the local scatter- 
ing parameters. Specifically, given the characteristic 
impedances of the lines, the reflected impulse response 
is shown to be a sequence of impulses whose strengths 
are determined iteratively or in closed’form from a cer- 
tain upper Hessenberg matrix L, and the transmitted 
impulse response is also a sequence of impulses whose 
strengths are determined from the transpose of L. 
Conversely, given a sequence of impulses, a cascaded 


