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ABSTRACT

A new decomposed version of three-port adaptors for wave

digital filters (WDF's) is proposed, which is especially suit-
able for floating-point arithmetic and for implementation
on digital signal processors (DSPs). By using the proposed
three-port adaptor, the concept of modified wave digital
filters (MWDFs) is appropriately extended to WDFs in-
volving any n-port adaptors (n is integer). The resulting
MWDFs preserve all the important properties of WDFs,
in particular, those relating to stability.

1. INTRODUCTION

Wave digital filters (WDFs) [1] possess a number of ex-
cellent high-performance properties [2] such as low coeffi-
cient sensitivity and various types of stability under finite
wordlength conditions. All these good properties result
from the losslessness and passivity of the WDF building
blocks, in particular, the WDF adaptors.

Under finite wordlength conditions, an adaptor is made
passive if all arithmetic operations inside the adaptor are
carried out exactly by means of appropriately extended
signal wordlengths inside the adaptor, i.e., the behavior
of the adaptor is so-called conditionally linear. This con-
cept is suitable for special-purpose hardware implemen-
tions using fixed-point arithmetic. However, for implemen-
tations using a commercial digital signal processor (DSP),
the signal wordlength is predetermined and the user is
not able to extend the internal signal wordlength with-
out significant computational overhead. Therefore, these
DSP implementations present a type of problem that is
not encountered when designing custom hardware. More-
over, ensuring the passivity under finite wordlength condi-
tions has been a general problem with respect to floating-
point arithmetic, because the method of extending internal
wordlength becomes infeasible for floating-point additions,
if the operands have very different exponents. In this con-
tribution, we are concerned with implementation methods
that can solve these problems and thereby facilitate DSP
and/or floating-point implementations.

Most commercial fixed-point DSPs have two interesting
properties. First, they possess an accumulator with dou-
ble (or longer) signal wordlength. Second, the computing
combination of 1 multiplication and 1 accumulation can be
performed in 1 cycle either inherently or by using pipelin-
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ing. By making use of the first property, WDF adaptors
can be made strictly passive [3). However, the number
of processing cycles required for computing the outputs of
an n-port adaptor is in this case n?, which is larger than
the minimum possible 4n — 6 (for the case of elementary
adaptors [4]).

In order to reduce the number of computing cycles to
the minimum, while maintaining the passivity property of
adaptors, modified wave digital filters (MWDFs) have been
proposed [5] for WDF's involving just two-port adaptors.
In the approach [5], the second of the above stated DSP’s
properties is appropriately employed. Also, the MWDFs
in [5] are suitable for floating-point implementations.

As is known [4], WDFs require for implementation, in
general, two elementary adaptors, which are the two-port
adaptor and the three-port adaptor having a reflection-
free port. Thus, there is a need to extend the concept of
MWDFs in [5] to the case of three-port adaptors. To this
end, we propose an appropriate extension in this paper.

To extend the MWDFs to the case of three-port adap-
tors, the approach in [5] should not be used directly, be-
cause the direct extension mentioned in [5] cannot retain
all the passivity properties of WDFs, in particular, the in-
cremental passivity property [5], which is related to the
forced-response stability and other related properties [6,7).
Moreover, an appropriate extension is more important to
implementations using floating-point arithmetic, because
for the direct extension of [5] it is even not known how
to effectively guarantee the simple passivity under finite
wordlength conditions, which is related particularly to the
freedom from limit cycle oscillations. Recall that any
floating-point digital filter that cannot be built strictly
without parasitic oscillations can always sustain a para-
sitic oscillation involving the highest possible value of the
exponent [8,9].

In this contribution, we propose a new three-port adap-
tor which overcomes all the above mentioned problems.
It enables us to achieve MWDFs which possess all the
well-known desirable sensitivity and stability properties
of WDFs, while the number of DSP processing cycles re-
mains minimal. Although the number of multiplications
in the proposed MWDF three-port adaptor is not mini-
mal compared with the voltage-wave digital filter (VWDF)
three-port adaptor, the new adaptor is also important
for floating-point special-purpose hardware implementa-
tions because it ensures passivity under floating-point
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arithmetic, which is especially suitable for implementing

MWDFs [10].

2. DECOMPOSITION OF THE THREE-PORT
ADAPTOR

The proposed three-port adaptor is a decomposed version
of the conventional three-port adaptor. This decomposed
three-port adaptor is comprised of 3 equal-structured two-
port building blocks. Thus, the original three-port problem
is reduced to a combined two-port problem.

The decomposed versions of three-port adaptors have
been used for various purposes {11,12]. Although all the
decomposed three-port adaptors are equivalent, i.e., they
realize the same scattering matrix describing the adaptor,
the internal structures, in particular, the interconnections
of the two-port building blocks, may be quite different, in
order to suit the specific applications.

Further, it can be shown that power-wave digital filters
(PWDFs) and voltage-wave digital filters (VWDFs) result
in the same MWDFs. We focus hereafter on PWDFs and
will give a more comprehensive discussion elsewhere.

It is known [2] that the scattering matrix describing an
n-port adaptor (n is an integer greater than 1) used in
PWDFs is an orthogonal matrix. By using Given’s algo-
rithm [13], any orthogonal matrix can be decomposed into
products of elementary orthogonal matrices, each corre-
sponding to a planar rotation [2]. Using this property, we
can decompose a three-port adaptor into 3 two-port build-
ing blocks.
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Figure 1. Symbol of the three-port parallel adaptor

2.1. Three-Port Parallel Adaptor
2.1.1. Unconstrained Three-Port Parallel Adaptor

The conventional unconstrained three-port parallel
adaptor given in Fig.1 is described by the scattering matrix
S, and
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where a = (a1,a2,a3)T, b = (by,bs,b3)T (the superscript
T denotes the transpose) and v = /2Gi/Go (G is the
port conductance at the port i.). With Go = G, + G2 +Gs
and then 4 + 4% + 4% = 2, S, is orthogonal.

bz Gz‘l‘az

—= < NN > ]bs
G1 St |S2 Gs
ar| | ——r— T=
|Ss
(a)
Ak A2ia by

—> —>—
L b Ao

L_}_-)l . _pxzi
a p}\42i—1 bl
(b)

Figure 2. (a) Decomposed three-port adaptor. (b) Two-port
building block

The decomposition of S, in (1b) can be given by

/\1 —p/\z 0 1 0 0 4\5 0 —pAs
Sp= 1\2 p/\| 0 0 r\;; —p/\4 0 1 0 y
0 0 1/\0 X pAs /J\X O pXs

(20)
where the integer p is unimodular and p = 1 for the parallel
adaptor.

After carring out the matrix multiplications in (2a) and
the comparison of the entries in (1b) and (2a), we obtain
the equivalence of (1b) and (2a) by setting

A =pr2m, Az =£4/1-A2

plrs —1) nM
As = ———= =
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It can be seen, by using the relations below (1), that
A4 =M+ =2+ =1, 3

which verifys that the plane rotation matrices are orthog-
onal. Defining the submatrices S; (: = 1,2, 3) as follows

[ A2i-1 —Pf\z.')
Si _( A prrin ) )

we obtain the signal block diagram in Fig.2 for the de-
composed three-port parallel adaptor. The corresponding
signal flow graph does not contain any directed loops and
therefore it is realizable.

VI-18



Gy

Gi

Figure 3. Reference-domain circuit of the decomposed three-port parallel adaptor

It is well-known from classical network theory that the
two-port scattering matrix S; can be realized by using an
ideal transformer and eventually a gyrator. Taking into ac-
count the interconnections between the blocks S; in Fig.2a,
we obtain the overall reference-domain circuit for the de-
composed three-port adaptor in Fig.3.

2.1.2. Reflection-Free Three-Port Parallel Adaptor

The three-port adaptor with a reflection-free port is one
of the two elementary adaptors. Without loss of generality,
we choose the port 3 to be the reflection-free port, i.e.,
G3 = Gy + G2. This results in y3 = 1 or equivalently
As = 0. The corresponding signal block diagram is given
in Fig.4, where the single sign-inverter can be absorbed in
the block S;.
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Figure 4. Decomposed reflection-free three-port adaptor

2.2. Three-Port Series Adaptor

For PWDFs, the scattering matrices of the parallel adap-
tor, S,, and the series adaptor, S,, are formally related
by

Sp = _‘Say (5)
where the entries of S, are however defined by v =
V2Ri/Ro with R; = 1/Gi, Ro = R; + R: + R; and
R3 = Ry + R, for the reflection-free adaptor. Therefore, all
the decomposition relations discussed above for the paral-
lel adaptors hold formally for the series adaptors with the
unimodular constant p = —1. This also means that, for
the reference-domain circuit of the decomposed three-port
series adaptor, there are no gyrators present.

2.3. On the Decomposed Adaptors

Let us reconsider Fig.2. By decomposition, the lossless
three-port adaptor is partitioned into 3 lossless two-port

blocks S; to S;, each of which realizes an ideal transformer,
a gyrator and a two-port adaptor. To compute one output
value of such a two-port block, it requires 2 multiplications
and 1 addition which is to be carried out at last. Thus,
the nonlinear operations, such as truncations and overflow
corrections, can be performed immediately after the addi-
tion or they can be integrated with the addition. In other
words, the addition is not required to be performed ex-
actly. This property is most important for floating-point
arithmetic, where additions cannot be performed exactly
in many situations.

Because the multiplications can be carried out exactly
by using double precision for output signals in both fixed-
point and floating-point arithmetic, and taking into ac-
count the considerations in the last paragraph, the two-
port blocks S; can be made conditionally linear for both
types of arithmetic. Thus, the passivity of the overall
three-port adaptor is guaranteed.

The number of multiplications in the two-port block S;,
which is 4, can be reduced to 2 by appropriate scaling. The
scaling procedure must obey certain conditions. That is,
the resultant multiplication coefficients must not be greater
than unity in magnitude. Further, the final scaled WDF,
which involves multiple three-port adaptors, should con-
sist of two-port blocks containing only 2 multiplications,
each of which is combined with an accumulation, enabling
the efficient use of the above-mentioned second property
of DSPs. Also, no multipliers should be left outside the
two-port blocks except at the input and output. In fact,
the scaled WDF is the so-called MWDF.

The final scaled unconstrained WDF three-port adaptor
has 6 multiplications combined with 6 accumulations. The
scaled reflection-free three-port adaptor has 4 multiplica-
tions combined with 4 accumulations. This results in 6 and
4 computing cycles, respectively, which are also the min-
imum number of computing cycles for VWDF three-port
adaptors.

3. SCALING, QUANTIZATION AND
STABILITY

The scaling and coefficient quantization procedure of the
decomposed three-port adaptor is different from that of
the two-port adaptor. As can be expected, these proce-
dures are more complicated for the three-port adaptor,
even though the final result is quite simple.
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3.1. Scaling

The scaling procedure for the three-port adaptor is recur-
sive. A number of simple linear relations have to be sat-
isfied. In particular, there are 8 possible scaling strategies
for the decomposed reflection-free three-port adaptor and
24 possible scaling strategies for the decomposed uncon-
strained three-port adaptor. It is shown that among these
possible strategies, there always ezists one for which all
the multiplication coefficients are not greater than unity in
magnitude. A searching algorithm for this desired result is
given.

3.2. Coefficient Quantization

In most cases, the two-port block S; cannot be made loss-
less under the finite coefficient wordlength condition. In
order to make the two-port block at least passive, several
possible quantization conditions are given. Among these
conditions, there is one which imposes the least restrictions
on the coefficients.

First, it is easy to make the decomposed WDF three-port
adaptor shown in Figs.2 and 4 passive, because, according
to (3) and (4), it is necessary and sufficient to ensure

A1+ 2% <1,

i=1,2,3. (5)

That is, the procedure of coefficient quantizations can be
carried out independently for each of the WDF two-port
blocks S;.

However, the coefficient quantization procedures for the
scaled MWDF building blocks are not anymore indepen-
dent of each other. In many cases (in particular, when a
port of the adaptor is interconnected with a shift element),
the coefficient quantization conditions for each building
block within a decomposed MWDF adaptor are related
to each other. Also, an appropriate quantization order has
to be given.

A set of sufficient quantization conditions and an appro-
priate quantization order are given, which are easy to be
satisfied.

3.3. Stability

By using the decomposed three-port adaptor, all the sta-
bility and related properties of conventional WDFs under
finite wordlength conditions can be ensured by using the
same means, that is, magnitude truncations and satura-
tions for signal under- and overflow corrections.

4. SIMULATION

A computer simulation example has been completed, which
shows that a conventional three-port adaptor cannot be
made passive; that is, parasitic oscillations occur if the
minimum number of computing cycles is required for im-
plementations on DSPs. However, by using the proposed
decomposed three-port adaptor, the passivity and the min-
imum number of computing cycles are guaranteed.
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