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Absrracr-The low sensitivity property of lossless discrete integrator 
(LDI) low-pass ladder filters is shown to be preserved in lossless discrete 
differentiator (LDD) high-pass ladder filters 111. The exact design method 
for LDI ladder filters given in [Z] is further developed by introducing a set 
of closed-form design formulas for digital ah-pole Chebyshev transfer 
functions. A new technique for improving the numerical accuracy in the 
synthesis procedure is introduced. Finally, a comprehensive LDI ladder 
filter design program is presented. 

I. INTRODUCTION 

L OSSLESS discrete integrator (LDI) ladder filters [l] 
have become a popular filter structure in the field of 

signal processing [2]-[8]. The low coefficient sensitivity and 
the simplicity of the structure make it suitable for con- 
structing high quality digital filters [l], [2]. The LDI con- 
cept has also been successfully applied to switched-capaci- 
tor filter networks [5]-[8]. Many monolithic switched 
capacitor LDI ladder filters have been fabricated [5], [6], 
Low sensitivity digital low-pass ladder filters can be con- 
structed by using the lossless discrete integrator (LDI) 
l/(p -z-1/*) as a basic building block. Similarly, low 
sensitivity digital high-pass filters can be constructed by 
using the lossless discrete differentiator (LDD) l/(zi/* + 
z-l/*) as a basic building block [l]. A transformation is 
introduced so that an LDI low-pass ladder filter can be 
transformed to an LDD high-pass ladder filter. The topol- 
ogy of the signal flow graph is preserved in this transfor- 
mation so that the low sensitivity property of the LDI 
ladder filter is preserved in the transformed LDD ladder 
filter. 

Most of the discussion of LDI ladder filters in the 
literature is based on the original approximate design 
technique given in [l]. By using the LDI transformation 
.J + (zw - z-1/* )/T and then carrying out zl/* imped- 
ance scaling throughout the digital filter signal flow graph, 
one ends up with ladder terminations of half unit delays [l, 
31. Since these half unit delays are not realizable, they have 
to be replaced by either unit delays or no delays. These 
half unit delay replacements introduce error to the 
frequency response characteristic of the filter [l], [3], [7]. A 
number of methods have been devised to eliminate this 
error yielding the exact desired frequency response [2], [7], 
PI, 1151. 
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The method reported in [2] is further developed in this 
paper. The first step in this design procedure requires the 
determination of a digital all-pole transfer function. Digital 
Chebyshev transfer functions designed by applying bilinear 
transformation to analog Chebyshev transfer functions 
possess a number of zeros [9], [lo] so they are not suitable 
for LDI ladder filter implementation. On the other hand, 
all-pole digital transfer functions were traditionally de- 
signed by computer-aided iterative methods [9], [lo]. This 
paper introduces a set of closed form design formulas for 
digital all-pole Chebyshev transfer functions. 

A numerical problem has been pointed out in [2]. The 
synthesis procedure involves the factorization of a poly- 
nomial product K(z)K(z-‘) to the polynomials K(z) and 
K(z-‘). A straightforward method for doing this is to find 
all the zeros of the polynomial product K(z)K(z-‘) and 
then arbitrarily assign the zeros inside the unit circle to 
K(z). Unfortunately, the closely paired or highly clustered 
zeros of K(z)K(z-‘) renders the usual root-finding algo- 
rithms inaccurate. 

In this paper, new factorization and root-squaring tech- 
niques are developed to improve the numerical accuracy of 
the design. Some other synthesis equations are refor- 
mulated in order to facilitate computer programming. Fi- 
nally, a comprehensive LDI ladder filter design program 
together with two design examples are presented. 

II. THEORY AND DESIGN PROCEDURE 

In order to be self-contained, this section summerizes the 
theory and the design equations given in [2] for the synthe- 
sis of an LDI ladder filter. 

An LDI ladder filter can be considered to be a doubly 
terminated two-pair network, as shown in Fig. 1. 

Disregarding the internal structure, the two pair network 
can be characterized by a chain matrix equation 

with the terminal nodes being constrained by 

ul(t)=u(z)+z-~*Yl(Z) 
and 

U*(z) = -z-Y*(z). (2) 

From (1) and (2), the reciprocal of the transfer function is 
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Fig. 1. LDI ladder filter as a doubly terminated two-pair network. 

given by 

[H(z)] -l= H(z) = $fj = JJ$ 

= [A(z)-z-‘&?(z)] 
-z-‘/*[c(z)-z-wqz)]. (3) 

In order to determine the chain matrix elements A(z), 
B(z), C(z), and D(z), the following functions are in- 
troduced: 

E(z)=A(z)-z-WI(z) (4) 
F(z) =c(z)-z-“%(z). (5) 

Substituting (4) and (5) in (3) yields 

H(z) = E(z)-z-“*F(Z). (6) 
If we define an auxiliary function 

K(z) = E(z)+zW(z) (7) 
then E(z) and F(z) can be found by solving (6) and (7), 
which yields 

and 

E(z) = 
z-“*K( z) + z”2H( z) 

z1/2 + z-1/2 (8) 

qz) = Jw-H(z) 
zv + z-1/2 . (9) 

The auxiliary function K(z) is to be determined in such a 
way that the magnitude-squared transfer function of the 
filter is insensitive to the multiplier coefficient perturba- 
tions. This can be accomplished by imposing the following 
constraints to the chain matrix elements 

A(z) = FA(z-‘) 

B(z) = * B(z-‘) 

c(z) = f c( z-1) 

D(z) = T D(z-1) 

and 

A(z)D(z)-B(z)C(z) = (-1)” = r1 (10) 

where the upper signs correspond to odd order filters and 
the lower signs correspond to even-order filters. From 
(3)~(lo), it follows that 

K(z)K(z-‘)-H(z)H(z-l) = -(z1’2 + z-l’*)? 

01) 

It is shown in the original paper [2] that A(z) must be a 
polynomial in w of order n, where w = z112 - z-l/*. Simi- 
larly, B(z) and C(z) are polynomials in w of order n - 1 
and o(z) is a polynomial in w of order 12 - 2. In addition 
to this, each polynomial contains either odd or evenpowers 
of w only. These polynomials are called image polynomi- 
als. 

Referring to Fig. 1, the two pair network described by 
the chain matrix is a cascade of n ladder sections 

where 
ii(Z) =st~‘w=s,yp - z-q, l=gi<n (12) 

and si corresponds to the ith ladder section multiplier 
value and ‘so is the rightmost ladder branch multiplier 
value. The si’s can be found by using synthetic division n 
times as follows: 

A+) Ritz) L = -S,=li+lw + ci(z) 
ci(z) 

A,-,(t)=-Ci(Z) 
and 

Ci-l(Z) = - Ri(Z)p i=n,n-1;**,2,1. (13) 

This procedure is referred to as ladder decomposition. 
The above outline of the theory is actually over- 

simplified. For more detail, refer to the original paper [2]. 
Now, the design procedure for an LDI ladder filter is 

listed stepwise: 
1) Determine the reciprocal of the transfer function 

H(z). 
2) Calculate H(z) H( z- ‘) from H(z), find K( z)K( I-‘) 

from H(z)H(z-‘) by using (11) and then factorize 
K(z)K(z-‘) to K(z) and K(z-‘). 

3) Find E(z) and F(z) from H(z) and K(z) using (8) 
and (9) and then determine the chain matrix elements 
A(z), B(z), C(z), and o(z) from E(z) and F(z). 

4) Carry out the ladder decomposition given by (13) in 
order to determine the LDI ladder section multiplier and 
the rightmost ladder branch multiplier values. 

These design steps will be discussed in detail in the 
following sections. 

III. DIGITAL LDI AND LDD LADDER FILTERS 

The signal flow graph of a third-order LDI ladder filter 
is shown in Fig. 2. By carrying out zl/* impedance scaling, 
we end up with the signal flow graph of Fig. 3. Note that 
no approximation has been made in the signal flow graph 
manipulation and therefore the synthesis procedure yields 
exactly the desired frequency response. 

It has been shown [I], [2] that the lossless discrete 
integrator 1/(z’12 - z -l/*) forms the basic building block 



LIU et al.: SYNTHESIS OF LDI AND LDD LADDER FILTERS 

Fig. 2. Signal flow graph of a third-order LDI ladder filter. Fig. 4. Signal flow graph of a third-order LDD ladder filter with z-l/2 
eliminated. 

Fig. 3. Signal flow graph of a third-order LDI ladder filter with ze1j2 
eliminated. 

of low sensitivity digital low-pass ladder filters. Similarly, 
another operator called the lossless discrete differentiator 
(LDD) l/(z ‘I2 + z-l/*) is expected to be able to serve as 
the basic building block of low sensitivity digital high-pass 
ladder filters. This lossless discrete differentiator is equiva- 
lent to the one proposed in [l]. Indeed, a simple transfor- 
mation can be used to transform an LDI low-pass ladder 
filter to an LDD high-pass ladder filter. 

Consider the well-known low-pass to high-pass transfor- 
mation: 

z-)-z 
thus 

and 

z1/* j .z’/2 J 3 z-v2 j - jz-‘/2 

tz l/2 - z-v* ) + j(zl’2 + z-q. (14) 
Letting z = ejw on the LHS and z = ejw’ on the RHS of 
(14) yields 

t.d’=+lT-td 

where w is the original frequency variable and o’ is the 
transformed frequency variable. The new transformed 
transfer function is thus related to the original transfer 
function by 

jjt( ej”) = H( ,i(-w)). 05) 

Obviously, H’(ej”‘) is a mirror image of H(ei”) with the 
mirror located at o = 7r,/2. 

Substituting z-l/* by - jz-l/* in Fig. 2 and manipulat- 
ing it appropriately yields the signal flow graph in Fig. 4. 
Thus the transformation only changes the signs of certain 
branches in the ladder filter signal flow graph. The overall 
topology remains unchanged and thus the low sensitivity 
property of the LDI ladder filter is preserved in the LDD 
ladder filter. 

It is obvious from (14) that if pi = riejsl is a pole of the 
LDI low-pass ladder filter, then pj = - ridsi is a pole of 
the LDD high-pass ladder filter. Therefore, (14) transforms 
a stable LDI low-pass ladder filter to a stable LDD high- 
pass ladder filter. 

(‘3 
Fig. 5. Magnitude-squared transfer characteristic of, (a) a third- (odd) 

order, and (b) a fourth (even)-order Chebyshev low-pass filter. 

IV. DIGITAL CHEBYSHEV TRANSFER FUNCTIONS 

The derivation of a digital all-pole Chebyshev transfer 
function closely parallels to the derivation of an analog 
Chebyshev transfer function [ll], [12]. 

The magnitude-squared transfer characteristics of odd- 
and even-order Chebyshev low-pass filters that can be used 
for LDI ladder filter implementation are given in Fig. 5(a) 
and (b), respectively. In these figures, 

w, = passband edge 
W, = stopband edge 

c = passband ripple 
and 

A = stopband attenuation. 
Suppose H(z) is the reciprocal of an all-pole Z-transform 

transfer function. The magnitude-squared response 
IH(# with a Chebyshev transfer characteristic can be 
written as [ll], [12] 

jH(f+)]*=4[1+6*F*(~)] (16) 
where F(w) varies between zero and one within the pass- 
band and is larger than one within the stopband, z* = 
10°.lA~ - 1 and A, = passband ripple in decibels. Further- 
more, it can be shown that [9], [lo] 

IH( ej”) I* = H( z)H( z-l) 12=e,o = i m,c~s”-~w. 
i=O 

(17) 
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Fkd obtain 

Fig. 6. F*(w) of a third (odd)-order Chebyshev low-pass filter. 
/, f-21) 

From (17), if H(z) is a polynomial in z of order n, then where MO = 1. (The use of this notation will facilitate the 
F*(w) is a polynomial in cosw of order n, and F(U) is a subsequent discussion.) The choice of sin-’ or cos-1 de- 
polynomial in cos o of order n/2. The situation that n is an pends on the properties of F(w) and it will be shown that 
odd number will be clarified in the subsequent discussion. the following choice of I;(w) is suitable for an odd-order 

Similar to the procedure outlined in [ll], [12], the deriva- Chebyshev filter: 
tion of H(z) involves the following steps: 

1) Deduce the exact form of F(w) such that the transfer 
2cosw-(Mo+cosu,) 

characteristics in Fig. 5 is achieved. MO - cos w, II 
2) Obtain the exkt form of ]H(ej”)]*. or 
3) Calculate the zeros of IH(z) where z = e@, and P(W) =; -; cos ncos-l 

[ [ 

2cosw-(Mo+cosu,) 
then assign the zeros inside the unit circle to H(z). MO - cos w, II 

The derivation of the digital all-pole Chebyshev low-pass 
filter design formulas will start with a third-order (odd- 1 =-- LT 2cosw-(Mo+cosw,) 

order) low-pass filter example. The result is then gener- 2 2" [ MO - cos WC1 I 
(22) 

alized to the case of n th-order low-pass filters. 
Comparing Fig. 5(a) and (16), F2(w) of a third-order 

where T, is the n th-order Chebyshev polynomial. 
To show that (22) is a suitable choice of F(o), we find 

(odd-order) Chebyshev low-pass filter is given in Fig. 6. 
P(w) in this case is a polynomial in cos w of order 3/2. 

by direct substitution, 

Furthermore, it has the following properties [ll], [12] 
F(O)=0 and P(kw,)=l, 

1) F(w)=0 ifw=O,+wol 
which satisfy properties 1 and 2. 

Furthermore if the derivation procedure is to be valid, 

2) P(W) =l ifw=*w,,*o, F(w) must have the form of (18) or in general 

3) dP(w)/dw = 0 ifw=O,fo,,fw,,. F(w) = (1-c0sw)“*R(C0SW) (23) 

Observe that a factor of the form (cosw --OS ool) has where R(cos w) is a polynomial in cosw. This can be 

zeros at o = wol and w = - wol. Since every factor of this proven by using mathematical induction technique. How- 

form possess two zeros, (cosO-cos w), or equivalently ever, the complete proof is lengthy and thus will not be 

(1 - cos w) has double zeros at w = 0. The first property of included here. We will only demonstrate that the factor 

F(w) indicates a single zero at w = 0. If this corresponds to (1 - cos w)1’2 actually exist. 

a factor (1 - cos w)‘12, then 
The presence of the Chebyshev polynomial in (22) shows 

that F*(w) is a polynomial in cos w of order n. In addition 
F(w)=M,(1-cosw)“2(Cos~-COSW(J, (18) to this, at w = 0, or equivalently, at cm u = 1, 

which is a polynomial in cos o of order 3/2. F*(0)=1/2-1/2cos[ncos-‘(1)] =o. 

Since F?(U) is a polynomial in cos w of order 3, the Therefore, (1 --OS w) is a factor of F*(w). In other words, 
derivative of F*(w) with respect to w is a polynomial in (1 - cos ~)l/* is a factor of F(w). 
cos w of order 2, multiplied by - sin w, which is the deriva- By the same argument, it can be shown that the follow- 
tive of cos w. The above observation together with property ing form of F(w) is suitable for even order Chebyshev 
3 imply that low-pass transfer functions 

dP(w)/dw = M*( cosw -cos w,)(cos w --OS ool)(sinw) 

(19) 
F(w) = cos ; cos-l 

[ [ 

2coso-(Mo+cosw,) 
MO - cos 0, II 

Next, the factor (cos w --OS wl) in dF2(w)/dw indicates 
or 

that [l- F*(w)] must have the factor (cos w -cos wl)*. P(w) = ; +; cos 
2cosw-(Mo+cosw,) 

Consequently, from property 2 MO - cos w, 11 
1++)=M3( cosw -cOswl)*(cOsw -cosw,) (20) =;+;Tn 

2cosw-(Mo+cosw,) 
MO - cos w, 1 (24) 

Manipulating equations (18), (19), and (20) as in [ll], we with MO =l. 



LIU et 01.: SYNTHESIS OF LDI AND LDD LADDER FILTERS 373 

Referring to Fig. 5, an odd-order Chebyshev low-pass 
filter has the characteristic IH( = 2. Careful examina- 
tion of the LDI ladder structure indicates that this results 
in unity rightmost ladder branch multiplier, i.e., so = 1 in 
(12). Unfortunately, an even-order Chebyshev low-pass 
filter does not possess this property, so that two extra 
multipliers are needed to realize an even-order filter. 
Therefore, it would be desirable to modify an even-order 
Chebyshev.low-pass filter so that lZ#(ej’)l = 2. 

The modification can be achieved by eliminating one of 
the ripples in the passband of an even-order Chebyshev 
low-pass filter so that the passband of a, say, fourth-order 
filter is similar to the passband of a third-order filter [12]. 
The modified Chebyshev low-pass filter is suboptimal in 
the sense that the stopband performance of the modified 
filter is not as good as the original filter, but, in general, 
better than the next lower odd-order Chebyshev low-pass 
filter. 

A fourth-order filter example will be used to derive the 
modified Chebyshev low-pass filter design formulas. The 

F(0) = 0 yields 

MO =1+ (l 
-coswc)(~-cos(7r/n)) 

1+cos(rr/n) * (28) 

From this, MO > 1, which fulfills the requirement of (27). 
Equations (22) and (24) give F((w) for IuI < lw,l. For 

IwI 2 Iwc(, we have 

2cosw -(MO+cOsw,) < -1 
MO-cosw, 1 ’ 

and thus 
IH(eq* =4[1+ W(w)] 

(29) 

result is then generalized to the case of n th-(even) order L L 

low-pass filters. ~COSW-(Mo+cosw,) 
F*(w) of a fourth-order modified Chebyshev low-pass MO - cos w, 

filter is very similar to F*(w) of a third-order Chebyshev 
I 

low-pass filter (Fig. 5). However, w. and wol of a modified +:evenn; -:oddn 

fourth-order filter would in general be different from that Or 
of a third-order filter. The three properties of F*(w) of the 
third-order Chebyshev low-pass filter also apply to the 

(H(ej“)(* =4+2~* ncosh-’ 

modified fourth-order filter except that F( w ) in this case is 
a polynomial in cos w of order 2. 

From property 1, we can write 
F(w) = M,(l- cos w)(cos w - cos wol) (25) 

which means we forced double zeros at w = 0. Since 

F*(w) = M,2(1-cosw)*(cosw -coswo1)2’ 

the derivative of F*(w) must possess the factors (1 - cos w) 
and (cos w - cos wol). This together with property 3 imply 

dF*(w)/dw= M6(1-cosw)(cosw-coswl) 

.(cosw -coswol)(sinw). (26) 

Finally, 1 - F*(w) has the factor (cos w - cos wl)* as argued 
before and the factor (cos w - cos w,). Note that the factor 
(cos w - cos wc) can only have multiplicity 1, otherwise, this 
factor will show up in dF*( w )/do. Therefore, 

l-F*(w) = M,(cosw -coswl)* 

.(cosw-cosw,)(Mo-cosw) (27) 

where lMol > 1, otherwise F*(w) = 1 at a certain frequency 
other than w1 and w,, which is not allowed according to 
Fig. 5, or property 2. 

(Mo+cosw,)-2cosw 
MO - cos w, III (30) 

where MO = 1 for both odd- and even-order Chebyshev 
low-pass filters, and MO is given by (28) for modified 
even-order Chebyshev filters. 

Any four of the five parameters w,, ws, E, A, and n 
determine the remaining one in a Chebyshev transfer func- 
tion. Substituting iH(ej”)l by 2A at w = ws in equation 
(30) and rearranging, we get 

cash-‘[2= -11 
na 

cash- 1 (MO :;;;;&; Los wS ] ’ 

I 

’ integer’ 

0 c 

This formula can be used to determine the order of a 
Chebyshev filter in order to meet a particular filter specifi- 
cation. 

If we make the substitution z = ej“ in (30) and set 
IH( = 0, then 

Manipulating (25) (26), and (27) yields 
dcos w 

l+;[l+cosh[ncosh-‘[ ‘Mo+~~;;)--&+z-“]]] 

=O. (32) 
(MO -cosw)(cosw -cosw,) ’ This equation enables us to find the zeros of H(z). Let 

The solution to this equation is the same as (22) except that 
MO > 1. Substituting w = 0 in (22) and using the property 

cosw )-(z + z-l) 
b+jy=(Mo+M zcosw ’ (33) 

0 c 
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From (32) and (33), it can be shown that /3 and y are given 
by WI 

/3=cos[q+osh[+osh-‘[I+$]] 

,=sin[~+nh[+osh-l[I+~]] (34) 

where m=0,1,2;*. ,n - 1. Having determined /I and y, 
H(z) can readily be found by solving equation (33) and 
assigning the roots inside the unit circle to H(z). 

Now, the reciprocal of the transfer function is given by 

H(z) = ho(z - Pl>(Z - P2). - * (z - A). (35) 
Thus 

~o=I~(eio)l/~(l-~l)(l-~*)~~~(l-~”)l (36) 
where IH( = 2 for odd-order Chebyshev filters and 
even-order modified Chebyshev filters, and IH( &‘)I = 
2/m for even-order Chebyshev filters. 

Note that the above discussion on all-pole digital trans- 
fer functions is completely general. It can be used to design 
LDI ladder filters and any other suitable filter structures as 
well. The design formulas can also be extended to include 
high-pass, bandpass, or even multiband filters. 

V. FACTORIZATION AND ROOT-SQUARING 

The second step in the design procedure is to calculate 
H(z)H(z-‘) from H(z), find K(z)K(z-‘) from equation 
(11) and then factorize K(z)K(z-‘) to K(z) and K(z-‘). 
The last part of this step poses a major difficulty in the 
LDI ladder filter synthesis. 

The most straightforward method of performing the 
factorization is first find all the zeros of K(z)K(z-‘) and 
then arbitrarily assign the zeros in the interior of the unit 
circle to K(z) [2]. However, numerical ill-conditioning 
usually occurs in the required root-finding procedure [2]. 
This is because the zeros of K(z) are usually very close to 
the unit circle. 

Suppose zi and <ls a complex-conjugate zero pair of 
K(z), then z;’ and zip1 is a complex-conjugate zero pair 
of K(z-‘). Let 

zi = riejsf, where r = 1 

then 

Since 
‘i 

’ = r.- le.& 
I 

we have 

arg(z,) = arg( y-i) 

The two zeros zi and h-l, any i, of K(z)K(z-‘) are very 
close to each other. The situation is even worse for high- 
order narrow-band low-pass filters, in which case all the 
zeros cluster around 1 + j0. This renders the usual root- 
finding algorithms inaccurate. On the other hand, the 

coefficients of H(z)H(z-i) and K(z)K(z-‘) could be 
different by only a very small fraction. Therefore, in excess 
of twelve digits numerical accuracy could be required in 
the design of high-order narrow-band filters. 

In this paper, a new factorization technique is devised to 
tackle the numerical problem. The mathematical basis of 
this technique is given in the following paragraphs. 

Consider an n th-order polynomial, 

K(z) = koz” + klZn-l + * * * + k”_1Z + k, (37) 
then 

K( z)K( z-l) = ( kOZR + klz”-l + * . . + k,) 

4 koz-” + k1z-+l+ -. . + k,) 

=Io(Z”+z-“)+I1(z”-l+z-(“-l)) 

+ *-- +I,-,(z+z-‘)+I”. (38) 
From (37) and (38) 

I, = k,k, 

I, = k,k,-, + k,k, 

Ii= ~ k,k,,,-i 
p=o 

I,=k,k,+k,k,+ ... +k,-,k,-,+k,k,. (39) 

The factorization problem can be stated as follows: 
Given the coefficients Ii, 0 6 i 6 n, of K(z)K(z-‘), find 

the coefficients k;, 0 < k Q n, of K(z). The relationship 
between ii’s and ki’s are given by (39). 
This problem can be solved by using Newton’s method in 
several variables. 

If k(m)= [k,(m) k,(m) ... k,(m)lT is the ap- 
proximation ,of k, = [k, k, . . . k,lT after m itera- 
tions, Newton’s method states that [13],-[14] 

k(m+l)=k(m)-J,L’(m)[F/(m)-L] 

where 

L=[I, I, *-- 41’ 

kOk, 

kok-,+ k,kn 

q4 = 

and 

f/,(m) 
I+) 

f/,&4 

&4 

= 
i kpkp+n-i 

p=o 

k,k, + k,k, + . - * + k,k, 

84, -Mm)= 3q k=k(m)’ , [ 1 OGi, j<n 

(40) 
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where and 

315 

--I 2 ( 1 ‘i = r.- 2ei2% I 

= 

i 

+ kj+i-,kj + . . -1, i+n 

i=n. 

In both cases, 

J,(m)= 2 1 1 = kj-i+n(m)+ kj+i-n(m) (42) 
L-.-J Jk=k(m) 

provided that the indexes (j - i + n) and (j + i - n) are 
between 0 and n. If any of these indices are not inside the 
range, then the corresponding term is zero. (This will be 
referred as the “index in range” condition in the subse- 
quent discussion.) Furthermore, it is shown in the Appen- 
dix that in general 

J;‘(m)F,(m) = k(m)/2. 

Therefore, (40) becomes 
(43) 

J/(m)[k(m+l)-k(m)/21 = L. (W 
The iteration procedure is carried out in the following 
steps: 

1) Calculate J,(m) from k(m); 
2) Solve the matrix equation [ J/(m)][c(m)] = L by one 

of the standard method, as for example, Gauss elimination. 
Here [c(m)] is the unknown vector; 

3) Calculate the new approximation by k( m + 1) = c(m) 
+ k( m)/2. 

It can be shown that in the case of odd-order Chebyshev 
low-pass filters and even order modified Chebyshev low- 
pass filters, two of the zeros of K(z)K(z-‘) are 1+ j0. 
Due to the limitation of numerical accuracy, they become 
(l+ S,)+ j0 and (l+ a,)+ j0 where 6, and 6, are very 
small numbers. In other words, they become extremely 
closely paired zeros. These zeros must be removed before 
applying Newton’s method for factorization in order to 
avoid potential instability. This step is unnecessary in the 
case of even order Chebyshev low-pass filters. Experimen- 
tal observations shows that the factorization is usually 
stabilized in within 50 iterations. 

Newton’s method for factorizing K(z)K(z-l) to K(z) 
and K(z-l) produces accurate results in most situations. 
However, if higher numerical accuracy is desired, a root- 
squaring technique can be used. It has been shown that if 
zi = l;.ej9i is a zero of X(z)K(z-l) then 6-l = riplejsI is 
also a_zyro of K(z)K(z-l). Since ri is close to unity, lzil 
and bi I are very close to each other. However, consider 
the square of these zeros 

( zi)2 = rFej28i 

If ri ~1, then rf < ri and rie2 > ri-‘. In other words, the 
zero that is inside the unit circle becomes closer to the 
origin and the zero that is outside the unit circle becomes 
further apart from the origin. Therefore, the two zeros 
becomes more separated from each other. Furthermore, the 
arguments of the squared zeros are twice the arguments of 
the original zeros, so the squaring process would spread 
any clustered zeros that occur in the design of high-order 
narrow-band LDI ladder filters. 

In order to apply this principle, we need to calculate the 
coefficients of a new polynomial whose zeros are the 
square of the zeros of the original polynomial. This process 
is called root-squaring which is well known in numerical 
mathematical analysis [14]. 

Now, the factorization of K(z)K(z-‘) could be carried 
out as follows: 

1) Perform root-squaring on K(z)K(z-‘) so that the 
zeros of a new polynomial K( z)K( z-‘) are the square of 
the zeros of K(z)K(z-‘). -- 

2) Use Newton’s method to factorize K(z)K(z-‘) to 
K(z) and K( z-l). 

3) Perform square-rooting on K(z) so that the zeros of 
the resul~olynomial K(z) are the square roots of the 
zeros of K(z). 
Note that the root-squaring and thus the square-rooting 
process could be applied several times in order to separate 
highly clustered zeros. Now, the root-squaring process, 
which is well documented in the literature [14), will be 
introduced in detail and then the mathematics of the 
square-rooting process will be developed. 

Consider the following polynomials, 

z”K(z)K(z-‘) 

=z”[Io(z”+z-“)+ *** +z,-,(z+z-‘)+1,] 

=Io(z-zl)“‘(z-z,)(z-z~l)*-(z-z,l) 

(45) 

z”K( - z)K( - z-l) 

=Z n [ ( I, z” + z-“)-t - * * 

+(-1) “-9,~,(z+z-1)+(-l)“/,] 

=fo(Z+z,)-(z+z”)(z+z;‘)..~(z+Z,l). 

(46) 
Let 

z2”K(z) K(I-‘) 

= [ z”K(z)K(z-‘)I [ z”K( - z)K( - z-l)] 

=Z2n[&j(Z2n+Z-2n)+ *** + In-l(z2+z-2)+7J 
= g( 22 - z;). . . (z'-zn')(z'-z;2)-*(z2--z,2). 

(47) 
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Therefore, the zeros of z’“K(z)K(z-‘) are the square of Again, this problem can be solved by using Newton’s 
the zeros of z~~Y(z)K(z-~). From (45), (46), and (47), it method in several variables. 
can be shown that If k(m)= [k,(m) k,(m) .. . k,(m)lT is the ap- 

T=(-l)i 1;+2 i (-l)Pzi:pl,+p 
p=l I 

proximation of k, = [k, k, . . . k,JT after m itera- 

(48) 
tions, Newton’s method states that 

k(m+l)=k(m)-J,-‘(m)[F,(m)-S] (54) 
provided the “index in range” condition 0 Q i - p, i + p < ,where 
2n is satisfied, and if i-p,i+p> n, they are to be 
replaced by 2n - (i - p) and 2n - (i + p),. respectively. S=[& q *-‘- KIT, 

After K(z)K(z-‘) is found, we can use Newton’s 
method developed in the previous discussion to factorize 
K(z)K(z-I) to K(z) and K(z-‘), where 

K(Z) = i&zZn + Fz2@-‘)+ -. - + k,-, z2 + k,. K(z) = i&z’” + Fz2@-‘)+ -. - + k,-, z2 + k,. 

(49) 

Since 

K(z) = koz” + klz”-’ + -. . + k,,elz + k, 

=ko(z-z,)+z-z,) (50) = 
and 

(-l)nK(-z)=koz”-klz”-l+ e-0 

+(-I) “-lk,-lz+(-l)nk, 

=ko(z+z,)...(z+z,) (51) 
therefore, and 

K(z) =~z*“+~z~(“-~)+- + k,plz2+k, 

Equations (40)-(44) remain unchanged except that ki’s Equations (40)-(44) remain unchanged except that ki’s 
and ii’s become &‘s and cs, respectively. and ii’s become &‘s and cs, respectively. 

Next, K(z) has to be determined from K(z) such that Next, K(z) has to be determined from K(z) such that 
the zeros of K(z) are the square-roots of the zeros of K(z). the zeros of K(z) are the square-roots of the zeros of K(z). 

=k,2(z2-z+(z’-z,2) 

=(-l)“K(z)K(-z). 

From (50), (51), and (52), 
- 
k, = k,2 

k,=-k;+2kok2 

(52) 

~=(-1)i[k;-2ki-lki+I+2ki-2ki+2 

-2ki-3ki+3 + . . .] 

= (-l)i k;+2 i (-l)Pki-pki+p 
p=l I 

k,=(-l)“k,’ (53) 
provided the “index in range” condition 0 Q i - p, i + p G n 
is satisfied. The square-rooting process can be stated as 
follows: 

Given the coefficients 6, 0 G id n, ofK(z),‘find k,, 
0~ i 6 n, of K(z), such that & and ki are related by 
(53). 

k,2 
- k: + 2k,k, 

(-1)’ k;+2 i (-l)Pki-pki+p 
p=l 1 

(-1;“k; 

O<i, j<n 

where 

k= k(m) 

(55) 

k;+2 i (-l)Pki-pki+p . 
p=l 11 

If i Z j, the relevant terms correspond to 

i-p= j --* p=i- j + i+p=zi- j 

i+p= j + p= j-i + i-p=2i- j. 

Since p must be positive, only either one of them is true, 
that is, either 

$=2(-I&&. +(-l)i-jkjk2i_i+ -1 
J J 

= 2( - l)2i-ik2i-j 
or 

. +(-l)j-‘k,,_,kj+ ...I 

= 2( - l)‘k2,Aj 

is true. However, they are the same because (- l)2i-j = 
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(-1)‘. If i= j 

= 2( - l)‘k, = 2( - 1)2i-ik2i_i. 

Therefore, in ah cases [ = q-1)2i-j 
k2i-j ( m)] (56) 

with the “index in range” condition. 
Similar to the case of factorization, it can be shown that 

J,(m)F,(m) = k(m)/2. Therefore, (54) becomesA(m)[k(m 
+ l)- k(m)/21 = S. The iteration procedure is similar to 
that of Newton’s method for factorization. 

The root-squaring technique has been successfully ap- 
plied to design both even- and odd-order Chebyshev low- 
pass filters. However, due to unknown reasons, any at- 
tempt to apply the root-squaring technique to design 
even-order modified Chebyshev filters results in unstable 
iterations. Fortunately, unless extreme accuracy is re- 
quired, the root-squaring procedure is not strictly necessary 
in the design of LDI ladder filters. 

VI. THE CHAIN MATRIX ELEMENTS 

The first part of the third step in the design procedure is 
to find E(z) and F(z) from H(z) and K(z) according to 
(8) and (9). Rewrite these equations as 

(z +1@(z) =K(z)+zH(z) (y) 
and 

z-ifl(z+l)P(z)=K(z)--H(z) (58) 
where H(z) and K(z) are to be scaled by z-“12 [2]. Let 

K(z) = [ koz” + klzn-l + . . . + k,-, + k,] z-n/2 

H(z) = [ hOzn + hlzn-’ + * * * + h,-, + h,] Z-n/2 

(z+l)E(z) = [e&z”+l+e;z”+ -0. + eAz+eA+l]z-“/2 

z-“2(Z +l)F(z) 
= [ f{‘t” + f;z”-’ + . * * + fivlZ + f,l] z-“/2 

E(z)= [ eOzn + elz”-’ + . * * f en-,z + e,] Z-n’2 

and 

F(z) = [ foz”-l + flzn-2 + 

From (57), (58) and (59) 

eh = ho, 

e; = ki-l + hi, 

e’ n+1= kn 

and 

fi’=ki-hi, 

. + fnp2z + fn-,] z-(n-1)‘2. 

(59) 

i=O,l;*.,n. (60) 

Now, e, and h can be found from e( and fi’, respectively, by 

removing the factor (z + 1) [13]. Therefore, 

e, = ek 

ei = e(- eiel, i=l,2;**,n 

and 

fo = fo’ 

fi=fi’-h-1, i =1,2; * *,n -1. (61) 

Combining (60) and (61), we finally have 

eo=ho, 
ei = ki + hi - eiel, i=1,2;*-,n 

and 

fo = ko - ho 
f;=k,-hi-fivl, ;..,n i=1,2 (62) 

which can easily be programmed. 
Now we have to separate E(z) and F(z) to the chain 

matrix elements A(z), B(z), C(z), and D(z) which are 
image polynomials. Let 

A(z) = do(Z1/2 - z-w)” + d2(Z’/2 - z-1/2)“-2 

+ d4(z’/2 - z-‘/2)n-4+ . . . (63) 

and 

qz) = 4(Z’/2 - z-‘/2)n-1+d2(z1/2 - z-1/2)“-3 

+ &(zi/2 -z-1/2)n-.s+ . . . . (64) 

From (4) (63), (64) and (59) 

A(z)-z-“2B(Z) 

= do z1/2-z-1/2 [ ( 
)” _ dlZ-‘/2(z’/2 _ Z-1/2)n-1 

+ d2(z’/2 - z-1/2)“-2- d3z-‘/2(z’/2 - Z-1/2)n-3 

+ . . . + d2m(z’/2 - z-1/2)“-2m 

b Z-l/2)“-2m-l+ . . .] 

= ;dI;;;:;;’ -;;;(z -1).-l 

+d2z1(z-l)n-2-d3z1(z-l)n-3+ e.. 

+ d2mzm(z -l)n-2m 

-d2,+lz”‘(Z-l)R-2m-1+ . . .lz-“/2 

= i eoz” + elz”-’ + e2z”-2 + - - - + enelzl + ento] zCni2. 

(65) 
It is possible to write down a matrix equation that com- 
pares the coefficients associated to equal powers of z on 
both sides of this equation: 

qolz” --* qonz” 
qloz”-l qllz”-l * *. q1nz 

n-1 

: qnozo qnlZO *** qnnzo 

(66) 
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Consider a particular coefficient dj, we have 

2 djqijzn-i=d2,zm(z-1)“-2m, 
i=o 

for j = 2m = even (67) 

k djqijz”-i=d2m+lzm(z -l)“-2m-1, 
i=O 

for j = 2m + 1 = odd. (68) 

However, the RI-IS of (67) is 

d2mzm(z -l)“-2m = d2mzm;<; ( n -p’“)( - l)Pz”-2m-P 

=d2m~~,(n~m)(-1)‘z-~. 

Letj=2m and then i=p+ j/2, so that atp=O, i= j/2 
andatp=n- j,i=n- j/2.Thus 

n-j 

dzmz”( z - l)n-2m = dj c 
p=o 

n - j/2 

= dj c 

i= j/2 

= i djqijzn-i 
i=O 

from LHS of (67). Hence, 

\o, for other even j 

Similarly, equation (68) yields 
(69) 

c-1) 
i+l<j+l)/2 n-j 

4ij = 
1 i-(j+1)/2 ’ 

for(j+1)/2<(oddj)<n-(j-1)/2 
(70) 

for other odd j. 

Disregard z”-~ in (66), it becomes 

Since the matrix [yii] in (71) can be calculated from (69) 
and (70), the coeffrctents of A(z) and B(z) can be solved 
by using Gauss elimination. The coefficients of C(z) and 
o(z) can be found by exactly the same method. 

Having obtained the chain matrix elements, it is 
straightforward to find the -ladder multiplier values by 
carrying out the ladder decomposition according to (13). 

VII. COMPUTERPROGRAMANDDESIGNEXAIWLES 

The above design formulas have been integrated in a 
comprehensive LDI ladder filter design program (Fig. 7). 
This program implements the design of odd-order 
Chebyshev low-pass filters and even-order modified 
Chebyshev low-pass filters. The root-squaring procedure is 
not included for simplicity. The program is written in 
Fortran 77 and runs on a DEC VAX-11/780 computer 
system under the UNIX operating system. The investigator 
specifies the order, passband edge and ripple of the LDI 
ladder filter, then the program returns the ladder section 
and the rightmost ladder branch multiplier values. 

This program can design a wide range of LDI ladder 
filters with different specifications. Experiments shows that 
up to tenth-order filters can be designed. In addition to 
this, it is observed that the accuracy of the result is 
basically limited by the accuracy of the factorization step. 
The polynomial product K(z)K(z-‘) obtained by multi- 
plying the factorized K(z) must be close to. the desired 
K(z)K(z-‘) obtained from equation (11) as much as pos- 
sible, usually two digits after the decimal point. 

Because of this limiting factor, it is desirable to derive a 
relationship between n, wc, and E such that under certain 
condition the comprehensive LDI ladder filter design pro- 
gram can be used confidently. 

For 64 bits double precision arithmetic, numerical values 
are accurate up to about 16 digits. Allowing for 2 digits 
numerical error in the factorization step, the coefficients in 
K( z)K(z-‘) must be of order 1012 or less. Now the 
problem becomes estimating the order of magnitude of the 
coefficients of K(z)K(z-‘) for any combinations of n, tic, 
and E. From (11) and (38) 

H(z)H(z-‘)=lo(z”+z-“)+ **- 

+(I,-,+1)(z+z-‘)+(/,+2) 

and thus 

H(-l)H(-l)=f(21,-21,+ ... -21,-,+1,). (72) 

In all the observed cases, the coefficients Ii’s of K(z)K( z-‘) 
have alternating signs. Therefore, (72) can be written as 

[H(-1)12=2 2 ]f,] (73) 
i=O 

and this gives the approximate order of magnitude of 1,‘s. 
Setting z = e j0 = - 1 in equation (30) and using the for- 
mulas 

cash m, = ( emI + eMm1)/2 = em1/2, for large m1 

for large m 2 

and 

cosw,= l-w, \/2”1-wf/2, forsmallw, 
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c DIGITAL LDI LADDER FILTER DESIGN PROGRAY 
c by 
c E.S.K. LIU - December 1982 
c Department ot Electrical Engineering 
f The University of Calgary 
c Calgary Alberta Canada 

t 
k 
k 

A comprehensive digital LDI ladder fAlter design program 
The investigator specifies the order, ripple ( in db ) and 
passband edge ( in rad ). then the program returns the 
ladder section multiplier values of the LDI ladder filter. 
The right-most ladder branch multipliers are i. 

double complex alpha.zerot.zeroZ.zero( lO).p(O:iO) 
double precision pi.rn.rippIe,edge, 

rk.gain,phi.esilon,angle.beta.gamma. 
h(O:lO).k(O:10).e(0:10).1(0:10).s(1O).r(O:!O). 
I(O:lO).a(O:lO).c(O:lO),q(O:lO,O:~O) 

c 
read(S,*)n.ripple,edge 
pl = 3.141592653569793dO 
m = float(n) 

c 
c Calculate phi from the ripple speciAcation 
c 

esilon = l.dO + 2.d0/(10.d0**(0.ld0~ipple)-:.d0j 
phi = esilon + dsqrt(esilon*‘Z-l.dO) 
phi = dlog(phi)/rn 

c 
c Calculate the gain and zeros 
c 

gain = 2.dO 
;k = l.dO 
it(mod(n.Z).eq.O) rk = l.dO + (l.dO - dcos(edge)) 

k l (l.dO - dcos(pi/rn)) / (l.dO + dcos(pi/m)) 
do 100 m = 1.n 

angle = (Z.dO*float(m)-l.dO) l pi/m 
beta = dcos(angle) l dcosh(phi) 
gamma = dsin(angle) l dsinh(phi) 
alpha = dcmplx(rk+dcos(edge).O.dO) 

k - dcmplx(rk-dcos(edge).O.dO) l dcmplx(beta.gamma) 
zero1 = (alpha - zsqrt(alpha**Z-(4.dO.O.dO))) I (2 dO.O.dO) 
zero2 = (alpha + zsqrt(alpha**Z-(4.dO.O.dO))) / (Z.dO.O.dO) 
U(zabs(zerol).lt.l.dO)zero(m) = zero1 
lf(zabs(zeroZ).lt.l.dO)zero(m) = zero2 
gain = gain / zabs((l.dO,O.dO)-zero(m)) 

100 c0ntmue 
c 
c Calculate H(z) Irom the zeros 
c 

p(0) = dcmplx(gain,O.dO) 
doZOOm=l.n 

p(m) = dcmplx(O.dO.O.dO) 
do 200 I = ml.-l 

200 p(i) = p(+p(i-l)*zero(ti) 
do 300 i = 0,n 

h(i) = real(p(i)) 
300 k:i) = h(l) * 
c Calculate H(z)H(i/z) and then K(z)K(l/z) from H(z) 
c 

do 320 i = 0,n 
l(i) = O.dO 
do 320 j = 0.i 

320 l(i) = l(i) + b(j)*h(j+n-i) 
l(n-1) = l(n-i) - l.dO 
I(n) = l(n) - 2.dO 

c 
c Remove the factor (z-1) out of the approximate 
c K(z) and the factor -(z-l)**2 out of K(z)K(l/z). 
f 

do 350 i = 1.n 
l(i) = l(i-1)+1(i) 

350 k(i) = k(i-l)+k(i) 
do 360 i = 1.n 

360 l(i) = l(i-1)+1(i) 
do 370 I = On 

370 l(r) = -l(i) 
c 
c Do factorization 
c 

do 420 iterat = 1,50 
c 
c Construct the Jacobian matrix 
c 

do 400 i = O,n-1 
do 400 j = O,n-1 

q(i.j) = O.dO 
m = j+i-n+l 
it(m.ge.O .and. m.Ie.n-l)q(i.j) = q(i.j)+k(m) 
m = ]-i+rl-1 
if(m ge.0 .and. m.1e.wl)q(i.j) = q(i.j)+k(m) 

400 continue 

c 
c 
f 

410 

420 
c 
f 
c 

450 
c 
c 
E 

500 

550 
c 
c 
c 

c 
c 
c 

Solve the matrix equation and update k(m) 

do 410 i = O.n-? 
a(i) = l(i) 

call gauss (n.q.a.c) 
do 420 i = On-1 

k(f) = c(i) - k(i)/Z.dO 

Multiply K(z) by K(z-1). 

k(n) = 0. 
do 450 i = n.l.-i 

k(i) = k(i)-k(i-1) 

Calculate E(z) and F(z) bxn H(z) and K(z) 

e(0) = h(0) 
do 500 i = 1.n 

e(i) = k(i-I) f h(i) - e(i-1) 
f(0) = k(0) - h(0) 
do 550 i = 1.n 

f(i) = k(i) - h(i) - I(i-1) 

Calculate the image polynomials A.B,C and D 

call qmat (n.9) 
call gauss (n+l. +.a) 
call qmat (n-1. 3 
call gauss (n.q.f.c) 

Do ladder decomposition 

do 800 m = n.l.-1 
s(n-m+l) = -c(O) / a(0) 
c(m) = O.dO 
do 700 i = 2.m.2 

700 r(i-2) = a(i) + c(i) / s(n-m+l) 
do 800 i = 0.m1,2 

a(i) = -c(i) 
800 c(i) = -r(i) 
c 

rrite(6,920)(i,s(i).i = 1.n) 
920 lormat(lx.“ladder section s(“.iZ:‘) = “,g:&lO) 

stop 
end 

c 
c 
c Subroutine “qmat” constructs the Q matrix for 
c image polynomial calculations. 
f Subroutine parameters: 
c n = order of polynomial 
c q = the returned Q matrix 
c 

subroutine qmat (n,q) 
double precision q(O:lO.O:lO) 
do 500 i = 0.n 

do 500 j = 0.n 
q(i.j) = O.dO 

100 

if(mod(j.Z).eq.O)then 
if(i.ge.j/2.and.i.le.n-j/Z)then 

q(i,j) = (-l.)“(i-j/Z) 
do 100 m = l.i-j/Z 

q(i,j) q q(i.j) l float( (n-j)-(i-j/2)+m ) / float(m) 
endlf 

else 
if(i.ge.(j+l)/Z.and,i.ie.n-(j-l)/Z)then 

q(i.j) = (-l.)**(i+l-(j+l)/Z) 
do 300 m = l.i-(j+1)/2 

300 end;(iJ) = q(i,j) l Boat( (n-j)-(i-(j+l)/Z)+m ) / float(m) 

endif 
500 continue 

return 
end 

c 
c 
c Subroutine “gauss” uses Gauss elimination with partial pivoting 
c to solve a set of simultaneous linear equations !131. 
c Subroutine parameters: 
c n = number ol simult&eous equations 
f a=nxnmatrixAinAX=B 
c b = n vector B in AX=B 
c x = returned solution n vector X 
E 

subroutine gauss (n.a.b.x) 
double precision r.a(1?,l:).b(il).x(ll) 

c 
do 500 i = l,n-1 

c 
c Partial pivotmg 

Fig. 7. A comprehensive LDI ladder filter design program. 
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c 
k=i 
do 100 j = i+l.n 

100 if( dabs(a(j.i)) .gt. dabs(a(k.i)) )k = j 
r = b(k) 
b(k) = b(i) 
b(i) = r 
do 300 j = i.n 

r = a(k.j) 
a(k.j) = a&j) 

300 a(i.j) = r 
c 
c Tramlorm A to an upper trianglar matru 
f 

do 500 k = i+l,n 
r = -a(k,i)/a(i.i) 
b(k) = rob(i) + b(k) 
db6iOOj =i,n 

500 a(k.j) = r*a(iJ) + a(k.j) 
E 
c Backsolve the trianglar equatmns 
c 

x(n) = b(n)/a(n.n) 
do 700 k = 1.~1 

r = O.dO 
do 600 j = 1.k 

600 r = r + a(n-k.n+l-j) l x(n+l-j) 
700 x(n-k) = (b(n-k)-r) / a(n-k.n-k) 
f 

return 
end 

Fig. 7. (contd.) 
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Fig. 8. The (a) overall and (b) detailed passband magnitude-squared 
response of a fifth-order LDI ladder filter designed by the program in 
Fig. 7. 

yields 

[H(-1)]2=4+2c2 ncosh-’ 

4, 
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MULTIPLIER VALUES: 

SI = 0.4302762507 

s2 = 0 7072261617 
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54 = 0 6300666004 

S5 = 0 6235623765 
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57 = 0 6619765723 
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Fig. 9. The (a) overall and (b) detailed passband magnitude-squared 
response of a tenth-order LDI ladder filter designed by the program in 
Fig. 7. 

Therefore, if E~(~/wJ~~ G 1012 and n G 10, the LDI ladder 
filter design program can be used confidently. 

The program had been used to design a narrow-band 
LDI .low-pass ladder filter with specifications n = 5, w, = 
0.04~ and A, = 0.01 dB. The magnitude response of the 
designed LDI ladder filter (without coefficient quantiza- 
tion) is plotted in Fig. 8. A wideband LDI low-pass ladder 
filter example with specifications n =lO, w, = 0.47r, and 
A, = 0.1 dB is given in Fig. 9. The accuracy of the design 
program is fully demonstrated. 

VIII. CONCLUSION 

It has been shown that LDI low-pass ladder filters can be 
transformed to LDD high-pass ladder filters. The topology 
and thus the low sensitivity property of the LDI low-pass 
ladder filters are preserved in the LDD high-pass ladder 
filters. Exact design of an LDI ladder filter requires the 
determination of a digital all-pole Chebyshev transfer func- 
tion which is traditionally done by computer iterative 
methods. In this paper, a set of closed-form design for- 
mulas is derived for such transfer functions. A new fac- 
torization technique is developed to improve the numerical 
accuracy of the design, several synthesis equations are 
reformulated and they are incorporated into a comprehen- 
sive LDI ladder filter design program. 
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APPENDIX I or 
PROOF OFJ-'(WZ)F~(~)= k(m)/2 INTHE 

l-f K( z)K( z- ) POLYNOMIAL FACTORIZATIO~~ 
J;‘(m)q(m) = k(m)/2 

PROCEDURE as required. 

Since both J,(m) and q(m) are calculated at k = k(m), 
the iteration index m could be omitted in the following PI 
discussion. The equation 

Jf-lFf = k/2 
is equivalent to 

Jrk = 2Fr 

PI 

131 

[41 where 
k=[k, k, k, .a. k,lT 

F/'[hl 41 fh *** f/.1' 
hi= I6 kpkp+n-i 

p=o 
and the Jacobian matrix 

Now. 

= j$okj$ ' 
[ I I 

But 1 
q = [q,] * 

In other words, it is required to prove 

any i. 

Recall (42) that 
% $ = kj-i+, + kj+i-n 

J 

with the “index in range” condition. Now, 

~ [kj$] = ~ [ kjkj-i+,] + ~ [kjkj+i-,] . 
j=O J j=O j=O 

Let j = p in the first summation and j = p - i + n in the 
second summation on the RHS of this equation, then 

i [kj$]= k [kpkp-i+n]+ i [kp-t+nkp]* 
j=O J p=o p=i-n 

I51 

161 

[71 

PI 

191 

WI 
Pll 
WI 
P31 

[I41 

1151 
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p-0 

Jrk = 24 
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