1340 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41. NO. 3, MARCH 1993

Recursive Pruning of the 2-D DFT with 3-D Signal
Processing Applications

Knud Steven Knudsen, Studen: Member, IEEE, and Leonard T. Bruton, Fellow, IEEE

Abstract—A recursively pruned radix-2 X 2) two-dimen-
sional (2-D) fast Fourier transform (FFT) algorithm is pro-
posed which reduces the number of operations involved in the
calculation of the 2-D discrete Fourier transform (DFT). It is
able to compute input and output data points having multiple
and possibly irregularly shaped (that is, nonsquare) regions of
support. The computational performance of the recursively
pruned radix-(2 x 2) 2-D FFT algorithm is compared with that
of pruning algorithms based on the one-dimensional (1-D) FFT.
The proposed recursively pruned 2-D FFT algorithm is shown
to yield significant computational savings when employed in the
recently proposed combined 2-D DFT/1-D linear difference
equation filter method to enhance three-dimensional spatially
planar image sequences, and when employed in the MixeD
moving object detection and trajectory estimation algorithm.

I. INTRODUCTION

HE one-dimensional (1-D) discrete Fourier transform
(DFT) is part of many signal processing algorithms.
The 1-D fast Fourier transform (FFT) algorithm [1] pro-
vides a computationally efficient method of calculating a
length-N 1-D DFT given N input data points. However,
when a number of the input data or the output data points
can be neglected, increased computational efficiency may
be achieved by modifying the FFT algorithm. This is
commonly referred to as ‘‘pruning’’ (i.e., removing un-
necessary computations from) the FFT algorithm [2]-{4]
and has found application in data interpolation, least
squares signal approximation, and cepstral smoothing [2].
This contribution extends the idea of FFT pruning to
two dimensions. The 2-D FFT pruning methods presented
are a result of a logical extension of 1-D FFT pruning
methods. The first two algorithms presented have been
previously investigated [5], although not as thoroughly as
in this contribution. They provide the background knowl-
edge and inspiration for the development of the final,
novel 2-D FFT pruning algorithm.
First, a pruned 2-D FFT algorithm is developed based
on the row—column decomposition [6] of the 2-D DFT.

Manuscript received February 9, 1991: revised May 15, 1992. This work
was supported by the Natural Sciences and Engineering Research Council
of Canada.

K. S. Knudsen was with the Department of Electrical and Computer En-
gineering, University of Calgary, Calgary, Alberta, Canada T2N1N4. He
is now with the Burchill Communications Research Group, Department of
Electrical Engineering, Technical University of Nova Scotia, Halifax, NS
Canada, B3J 2X4.

L. T. Bruton is with the Department of Electrical and Computer Engi-
neering, University of Calgary, Calgary, Alberta, Canada, T2N IN4.

IEEE Log Number 9206023.

The row and column DFT’s are computed using pruned
1-D FFT algorithms [2]-[4]. A second, pruned 2-D FFT
algorithm is developed by following the same approach
used to prune 1-D FFT algorithms and by (naively) ex-
tending it to a radix-(2 X 2) FFT algorithm [6]. For ex-
ample, branches of the radix-(2 X 2) 2-D FFT butterflies
not involved in the computation of the anticipated output
points are pruned (removed). At this point, a problem is
recognized. Both of the 2-D FFT pruning algorithms
above require the anticipated input or output data points
to have a single, contiguous, square region of support with
sides that are a power of two in length. It is argued that
this constraint severely limited the usefulness of these al-
gorithms whenever there are multiple, unconnected re-
gions of support or when a region of support is irregularly
shaped.

An algorithm is proposed that overcomes the above
limitation. The 2-D FFT signal flow graph is considered
in its entirety. The required input and output data points
for each butterfly in each pass are determined via a recur-
sive procedure. Flags are stored in lookup tables for each
butterfly indicating which input and output data points are
required. The regularity of the 2-D FFT signal flow graph
allows the tables to be small. The resultant recursively
pruned 2-D FFT algorithm is very computationally effi-
cient, especially when it is applied to a series of images;
for example, in image sequence processing applications.
The recursively pruned 2-D FFT algorithm is able to han-
dle input and output data points on multiple, separate, and
irregularly shaped regions of support. Such regions of
support occur in applications such as discrete image anal-
ysis and interpolation [7], [8], discrete image sequence
filtering [9]-[11], 3-D moving object tracking filters [12],
moving object detection and trajectory estimation [131,
and high definition television (HDTV) signal processing
[5]. As an example, consider a radiologist who selects
several, irregularly shaped regions of interest on a nuclear
magnetic resonance image and wishes to expand (zoom in
on) the regions to show the available detail more clearly.
Whereas previous interpolation methods would require
several invocations of a pruned 2-D FFT algorithm [7],
(8], the recursively pruned 2-D FFT algorithm can ac-
complish the task in just one invocation. Other applica-
tions, such as constrained iterative image reconstruction
and multidimensional spectral estimation [6], should also
benefit from using the recursively pruned 2-D FFT algo-
rithm.

1053-587X/93$03.00 © 1993 IEEE

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

Two practical applications are presented which dem-
onstrate the computational efficiency of the recursively
pruned 2-D FFT algorithm. In the first problem, the 2-D
DFT is combined with 1-D linear difference equation
(LDE) filters to realize a discrete transform/spatiotem-
poral mixed domain, hereafter referred to as MixeD, filter
[9]-[11]. The filter is designed to enhance 3-D spatially
planar pulse signals [14]. In the second problem, the 2-D
DFT and a 1-D high resolution spectral estimation method
are combined to form a MixeD moving object detection
and trajectory estimation algorithm. This algorithm is able
to detect the number of 2-D objects moving on linear tra-
jectories in an image sequence and provide very accurate
estimates of their trajectories [13]. In both examples, the
recursively pruned 2-D FFT algorithm is used to compute
2-D DFT coefficients with irregularly shaped and, in the
latter problem, multiple, unconnected regions of support.

The remainder of the contribution is presented as fol-
lows. In Section II, the localized region of support is de-
fined and methods for pruning the 2-D DFT are consid-
ered on the basis of previously proposed 1-D FFT pruning
techniques [2]-[5], [8]. In Section III, the proposed re-
cursive pruning method is presented and, in Section 1V,
some experimental results are presented. Finally, in Sec-
tion V, the recursively pruned radix-(2 X 2) 2-D FFT
algorithm is compared with an unpruned radix-(2 X 2) 2-
D FFT algorithm in two practical signal processing prob-
lems.

II. PRUNING THE 2-D DFT USING A LOCALIZED
REGION OF SUPPORT

Consider a discrete finite-extent sequence x (1, ;) with
a 2-D region of support R*, where
R={n,n)0=n<N <x 0=mn<N
< 00, Ny, Ry, Nl’Nle } (1)
where "7 is the set of natural numbers. The region of sup-
port R? is the finite set of 2-tuples (n;, np) over which

x(n,, 1) is defined. The sequence x(n;, n2) is related to
the sequence X (k,, k) via the 2-D DFT pair

Ni—1 M—1
Xk k) = X X x(m,m) Wi Wi
n=0 m=
for0 <k, < N,O0O=k <N @
and
Ni—1 N2~
x(ny, m) = 2 2 Xk, k) W W
k=0 k=0

forO0 < n < N,0=m<N, (3)
where Wy = exp [—j (27 /N)]. The DFT pair is written
more compactly as

x(ny, np) © X(ky, ky). 4)
In general, x (1, np) and X (k,, ky) € =, the set of complex

numbers. The region of support for X(k;, k) is assumed
to be R%.

1341

We define a particular region of support 1> € R to
correspond to the region in R* where | X(k;, ky)| is not
less than some positive real number €. That is,

L = {(ky, k)| | Xk, k)| = e, e€ B, e >0} (5)

where & is the set of real numbers, and we define the
corresponding subsequence {X; (k, k)} S {X(k, ky)} as
{X, (ki, ko)} = {X(ky, k)| | XKy, k)|

> ¢, e€ i, e > 0} (6)
For the applications under consideration, e is chosen to
be sufficiently large so that L? is a set that defines a lo-
calized region of support that is much smaller than R, as
shown in Fig. 1. The proposed DFT pruning techniques
are useful if | X(k,, k)| is sufficiently small outside of L?
(that is, on {R*> (M L?}) that it can be neglected there. We
shall refer to the 2-D sequence x; (1, np) as the 2-D in-
verse DFT of X; (k, k»).

We now consider DFT pruning techniques that take ad-
vantage of a priori knowledge of the localized region of
support to achieve computational savings. Two methods
are considered in this section. First, a technique is con-
sidered that is based on the well-known row-column de-
composition of the 2-D DFT [6] and uses existing 1-D
FFT pruning algorithms [2]-[4). The second method is an
extension of the first method to the 2-D radix-(2 X 2)
butterfly FFT algorithms [5] and assumes coverage of the
localized region of support L? by means of rectangular
subregions.

A. The Pruned Row-Column 2-D FFT

An approach has been proposed [5], [7], [8] for the
pruning of the 2-D FFT algorithm based on the row—col-
umn decomposition of the 2-D DFT [6]. This method in-
volves replacing 1-D FFT’s by pruned 1-D FFT’s. We
will discuss the details of this approach, but it is prudent
to first present an example illustrating a 1-D FFT pruning
algorithm [4] and the two necessary modifications so that
it may be used in the pruned row-column 2-D FFT al-
gorithm. Hereafter, we will emphasize output-pruning al-
gorithms (that is, those yielding X; (k,, k;)), with the un-
derstanding that the development of input-pruning
algorithms is analogous.

An example of 1-D FFT output pruning, where
(X, (k)} = {X(3), X(4), X(5)}, is shown in Fig. 2. The
thick lines show the computations that must be performed
to obtain these points. This algorithm, though based on
the 1-D radix-2 decimation-in-time (DIT) output-pruned
FFT algorithm [4], differs from it in two ways; the num-
ber of output points is not an integer power of two and
the 1-D localized region of support L' does not include
the origin of the discrete frequency space (i.e., X(0) €
(X, (k)}, 0 ¢ LY. In cases where the number of output
points is not an integer power of two, examination of the
1-D DIT FFT signal flow graph shows that full and partial
(half) radix-2 butterflies are computed. Additional steps
are therefore required to indicate when and how to com-
pute the partial butterflies.

1342

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

—»k,
N-1

Fig. 1. A localized region of support, L.

N
B, W Bpur

Agy1 = A+ W B
Bpet = Ag- W'B,

Input data e pass 1 pass 2 pass3 Shifted output data
x(0) X(3)
x(4) W "K \ / X(4)
x(2) X(5)
x(6) X(6)
x(1) X(@)
x(5) X(0)
x(3) X(1)
x(7) X(2)

Fig. 2. (a) A 1-D radix-2 butterfly and the equations it represents. (b) An eight point 1-D FFT with output pruning. The set of
output points is {X; (k)} = {X(3), X(4), X(5)}. The input is modulated by Wi = W3 which shifts {X, (k,)} to the start of the
algorithm's output set. These points are later shifted to the correct location in the discrete 1-D frequency domain.

If 0 ¢ L? there are two possible modifications. Infor-
mation may be stored in lookup tables (one table for each
input, intermediate, and output pass of the FFT algo-
rithm) indicating which branches of the signal flow graph
need to be traversed to compute the set {X; (k;)}. The sec-
ond modification, which we adopt here, relies on the DFT
modulation theorem

nx(n) o Xk + i). %)

Each input data point is muliiplied by Wy = exp
[—j (27 /N)in], where i corresponds to the index of the

first coefficient in the set X;. The complex modulation of
the input data points may be incorporated into the first
pass of the FFT algorithm. The output-pruned FFT al-
gorithm is used to obtain output points which are, as a
result of the complex modulation, circularly shifted up i
locations. If necessary, the output points are shifted down
i locations to place the DFT coefficients in their proper
place.

The modifications discussed above are shown in Fig. 2
where partial butterflies are present in the second and third
passes and the input data is modulated by w. To place
the {X; (k;)} coefficient set at its proper location in the

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

discrete frequency domain, the set is circularly shifted
down three places.

Now consider 2-D FFT output pruning using the row-
column 2-D FFT algorithm. The row and column DFT’s
are computed using the output-pruned 1-D FFT algo-
rithm. A typical example of a localized region of support
L? is shown in Fig. 1 with the rows indexed by k; and the
columns by k,. The localized regions of support for the
row- and column-pruned 1-D FFT’s are determined as
follows.

Algorithm 1: The Output-Pruned Row-Column 2-D FFT

1) Row Output-Pruned FFT’s: The input data to the
column FFT routines is shown in Fig. 3. For each row
index k;, the DFT coefficients are computed for the lo-
calized region of support L}, = {k,|K*" = k, =< K"},
The indices k" and k$™ are passed to each call of the row
output-pruned 1-D FFT routine within the output-pruned
row-column 2-D FFT routine.

2) Column Output-Pruned FFT’s: For each column
index k,, the DFT coefficients are computed for the lo-
calized region of support L;, = gkllkﬁ""“(kz) < k =
k™ (ky)}. The indices ki*" and ki™ are functions of the
columns index, indicating their dependence on L?. The 2-
tuples (K" (k,), ki (k,)) are passed to the column output-
pruned 1-D FFT routine for each column k,. Elements of
one such 2-tuple are shown in Fig. 4. O

This completes the description of the output-pruned row-
column 2-D FFT. The algorithm for an input-pruned row-
column 2-D FFT routine is developed in a similar fash-
ion.

The computational savings for the output-pruned 1-D
FFT routine can easily be calculated. However, due to the
fact that the 2-tuples (K{*"(k,), k5™ (ky)) are a function of
the column index k,, the overall computational savings
for the pruned row—-column 2-D FFT routine are not read-
ily calculated. It is easier to experimentally measure the
savings for a typical localized region of support L*. This
is done in Section IV.

The row—column approach implies that L? is contiguous
in the directions of the columns and rows. That is, the
required coefficients on L? must be two-connected (have
two neighbors) in the row and column directions, except,
of course, the first and last coefficients. Thus, localized
regions of support resembling those shown in Fig. 5 are
not allowed. The pruned row—column 2-D FFT algorithm
might be modified to allow such regions, but at the cost
of substantial computational overhead.

B. Rectangular Pruning of the Radix-(2 X 2) 2-D FFT
The rectangularly pruned radix-(2 X 2) 2-D FFT al-
gorithm [5] is very similar to the pruned row-column
2-D FFT algorithm of Section II-A. The main difference
is that a radix-(2 X 2) 2-D butterfly based 2-D FFT al-
gorithm is used. The 2-D butterfly, shown in Fig. 6, is
based on the following decomposition of (2) for Ny = N,

1343

—
r

& data required by
column FFTs

N-1

Fig. 3. The region of support for the data output by the row FFT’s of the
output-pruned row-column 2-D FFT routine.

)
N-1
Fig. 4. The start and end points of the localized region of support Lj, for

one column output-pruned 1-D FFT call within the output-pruned row-
column 2-D FFT routine.

k1 k\
h 3

N-1 N-1

2 O

N-1 N-1

—>

ko > o

N-1 N-1

Fig. 5. Four regions of support ill-suited for use by the pruned row-col-
umn 2-D FFT algorithm.

= N [6]:
X(ky, k) = Soolkyr, k) + Wit Soi(ky, ko)

+ WhSoky, ko) + WO

- Suki, ko) (8a)
X<k1 + %’ k2> = Soo(ki, ky) + WESoiky, k)

— WX Siolky, ko) — wh ke

- Sp(kys k) (8b)

1344

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

Saally k) Xk, k)
N
Satkiky) Xk, + P k)
N
S1g(k1 vk2) X(k1’ k2 + -é_)
N N
S,k ky) X(k, + 5 k, + %)

Fig. 6. A radix-(2 X 2) butterfly. Three complex multiplications and eight complex additions are required to calculate the
output coefficients.

X(kl, ky + g) = Sootk1, k) — WX So,(k,, ky)
+ Wi Sioky, k) — whtk
© Sy(ky, ky) 80)
X<k1 + %’ ky + g) = Sootkr, kp) — WES,(ky, k)
= WhSiolki, ky) + Whith

© Sk, k) (8d)

where the § terms are calculated by breaking (2) into even/
odd combinations of the 2-tuple (n,, n,),

WN/2y—-1 N/2)—1
Sk, k) = 2 2 xQ2ny, 2ny) wimki+2ami
n =0 n=0
(9a)
N/D=-1 (N/2)=1
Soiki, ky) = Eo ZO x@2ny, 2n, + 1)
= n=
. W§n1k1+2n2kz (9b)
N/ -1 (/2 -1
Slﬂ(kls kZ) = 20 Z x(2n1 + 1, 2n2)
n = m=
. Wiln|k|+2n2kz (90)
N/2)-1 (N/2)—-1t
Suthy, k) = 2 2 xQm +1,2m+ 1)
n=0 m=0
R W12Vn|k1+2nzk2. (9d)

The 2-D DFT of the input x(n;, n,) is calculated via a
““divide and conquer’’ strategy based on (8) and (9).
Output pruning this 2-D FFT algorithm is similar to
pruning the 1-D FFT algorithm (refer to Section II-A),
except that the localized region of support L? is square,
2™ by 2™ in extent, where 2" < N and m € N, and L?

starts at the origin (k; = k, = 0). In the 2-D case, a signal
flow graph (similar to Fig. 2) becomes too complicated to
prune by hand. Instead, a graphical method based on (8)
and 2-D matrices (lookup tables), one for each of the log,
(N) passes of the 2-D FFT algorithm, may be used. The
indices of (8) are modified to be

X, (ky, kp) = Soolky, ko) + WESpi(ky, ky)
+ WSk, ky) + Wt
Sk, k) (10a)
X,k + o, k) = Syki, k) + WSy (ky, ky)
~ WySiotky, ky)

— WytES, (&, ky) (10b)

X, ki, by +) = Sy(ky, ky) — Wl,cvzsm(kl, ky)
+ Wy Siotky, ky) — whithk

* Sutky, k) (10c)

X,(ky + a, ky + @) = Soolky, ky) — WSoi(ky, ky)
= W’; Siotky, ky) + W;(VIHQ

© Siilkys k) (10d)

where
N
o= Dlog2 (V) —p +1

p = pass number of the algorithm,
p=12,---,log, (N).

According to (8) and (10), the butterfly performs an in-
place calculation; that is, the output points replace the
input points. The input and output points for each of the
three passes necessary for an 8 X 8 2-D DFT are shown

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT 1345
Ak, ﬂk1 1xk1
c[clolplelelelr alslalsle|rlelr cIo]e]rlclplelr
clclolole[e[F]F] 8]s[s]5[c]p]c]D slo]alBl8lo]alE
8|8lo]o|alalBlE A[B[A[B[EIFIELF AEAANABAD
AEBREEEE B8 HEEEER o[11213lo]1[2]3
nABEEEHY AERBEEdad CIplElF|c|DlElF
NABEGEEHE o1|0jT]4[5]4]5 slo|alBl8|5|alE
ofofafaf2f2[3]3 2|3]2]316]171617 4[s]|se]7]a]s 167
oG] Jk, [IICTRIE] K, (1 £3 1 3 CI Y 3 1 I

(a) (b) ()

Fig. 7. The distribution of radix-(2 X 2) butterfly input and output points for the three passes of an 8 x 8 2-D DFT. (a) Pass
= 1. (b) Pass = 2. (c) Pass = 3.

K, ﬂk‘ Ak,
clolelrlciple]F alelalele[rFlelr RERRBREEE
AARRNARRE ARNARRNEE c[<[o[o{=[e[F[F
4l5[6l71415]6]7 2 B]A [BJE [FIE[F 8] 2| S[S|A[A|B|B
olilz[3lol1]2]3 A0 80 636 JE AEEEBREE
cIole[Flc|p]|E[F Z|3 &7 AABBEGEH
s[olafels]o]ale olilo]z]al5]a]5 NABBRGEHE
215861714151617 El AE 517 ol011]11212[3]3
o300t 1213] Gk, KIZIOTTREsRAIs] Sk, ofolalilzlala03] Sk,
(a) () (c)

Fig. 8. The distribution of radix-(2 X 2) butterfly input and output points for the three passes of an
DFT. The heavy lines outline the required output points computed in each pass. (a) The output X;
algorithm (pass = 3). (b) The output X; of pass 2 necessary as input to pass 3 (pass = 2). (c) The output X7

as input to pass 2 (pass = 1).

in Fig. 7. The points used in each butterfly are denoted
by hexadecimal numerals, for example, “A” = 1010,
represents points involved in the tenth 2-D butterfly of the
algorithm.

To illustrate rectangular output-pruning of the radix-(2
x 2) 2-D FFT algorithm, consider computing the two-
by-two set of coefficients {X; (k,, k)} = {X3(0, 0), X;(0,
1), X5(1, 0), X5(1, 1)}. This set is shown in Fig. 8(a).
Begin by considering the third (output) pass, p = 3. Only
the zeroth, first, fourth, and fifth butterflies are required
and for these butterflies only (10a) needs to be computed.
Next consider pass two, p = 2. The output of pass two is
used as input to pass three. By examining Fig. 8(a) and
(10) we observe the set of intermediate points
{Xl',(kh kZ)} = {XZ(O’ 0)7 XZ(O! 1)’ X2(1’ 0)7 X2(17 1))
X2(49 0)5 X2(4’ 1)’ XZ(S’ 0)7 X2(Ss 1)’ X2(0, 4)’ XZ(O’ 5)’
XZ(I’ 4)’ XZ(I’ 5)9 X2(4) 4)= X2(47 5)7 XZ(S’ 4)5 XZ(S’ 5)}
is computed in pass two. This set is shown in Fig. 8(b),
which indicates that all sixteen butterflies are required to
calculate the set of intermediate points, but that only (10a)
needs to be computed for each. Finally, Fig. 8(b) and (10)
are examined to determine the required output of pass one,
{X} (k,, k;)} (and hence the input to pass two). To cal-
culate the indicated points in pass two, all the output
points of all the butterflies of pass one are required.

1) Rectangular Tiling: Consider now the pruning ex-
ample shown in Fig. 1. Two problems are immediately
obvious. First, the output localized region of support is
not square and, second, it is not at the origin of the 2-D
frequency space. The first problem is solved by calling

8 x 8 output-pruned 2-D
from the final pass of the
of pass 1 necessary

N-1

A

D A square tile

P

N-1

>k,

Fig. 9. A possible placement of tiles to facilitate the computation of DFT
coefficients on the localized region of support L? of Fig. 1 using the
rectangularly pruned radix-(2 X 2) 2-D FFT aigorithm.

the rectangularly pruned radix-(2 X 2) 2-D FFT algo-
rithm several times. Several different square subregions
of support are used to cover the localized region of sup-
port L* in a tilewise fashion, as illustrated in Fig. 9. The
second problem is solved using the 2-D DFT modulation
theorem. The rectangularly pruned radix-(2 X 2) 2-D FFT
algorithm computes coefficients on the square subregion,
or tile, that starts at the origin of the frequency space. By
modulating each input data piont by wim i where (1,
l,) is the index of the lower left corner of the tile at its
final location in the frequency space, the coefficients gen-
erated by the rectangularly pruned radix-(2 X 2)2-D FFT
algorithm will correspond to the coefficients of the tile. It
remains only to shift the square subregion up and right by
I, and [, points, respectively. Before proceeding any fur-

1346 [EEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

ther with the algorithm development, a simple observa-
tion will show that this method is, in general, impractical.

Consider the typical tiling scheme shown in Fig. 9—
the localized region of support L? is often irregularly
shaped, requiring that several different square tiles be
specified to cover the extent of L. The computation of
the coefficients in each tile that does not start at the origin
of the frequency space will require the complex modula-
tion of each input data point on R?. These operations may
be incorporated in the butterflies of the first pass of the
algorithm. There are N* /4 butterflies per pass of a radix-
(2 x 2) 2-D FFT algorithm and four input/output points
per butterfly. Thus the required complex modulation re-
sults in (N”/4) - 4 = N? complex multiplications in the
first pass (the three complex multiplications of the normal
radix-(2 X 2) butterfly being incorporated into the mod-
ulation coefficients). The minimum number of complex
multiplications required by the remaining passes of the
rectangularly pruned radix-(2 x 2) 2-D FFT algorithm
are for a tile size of (2 X 2). For this case, pass p = log,
(N) requires (4 - 3) complex multiplies, pass p = (log,
(N) = 1) requires (16 - 3) complex multiplies, and pass
number i requires (4°2™ I+ . 3) complex multiplies.
Thus, the minimum number of complex multiplications
required to produce a (2 X 2) tile of output points, away
from the origin of the 2-D frequency space, is

loga(N) — 1
t*i]e = N2 +3 ‘Zl 41°gZ(N)~1+l
or
logzN) -1
Cle=N'+3 2 4. (11
If there are T (2 X 2) tiles involved, then
log2(N) — 1
Clieos = T<N2 +3 2 4i> (12)
i=1

complex multiplications are required. In comparison, the
full radix-(2 x 2) 2-D FFT algorithm requires

2

3N
CH ' 2om = — oz ™) - 1)

13)

complex multiplications [6]. The required number of
complex additions is similar for both algorithms. To
achieve computational savings, we require

* *
Ctﬂemml < C2 X 2total

or

log2(N) -1 . 3N2

T(N2 +3 231 4‘> < =3 (oga (V) =). (14)
For example, if N = 256, computational savings are
achieved only if T < 2.625; there must be two or fewer

(2 % 2) tiles! This result suggests that the rectangularly
pruned radix-(2 X 2) 2-D FFT algorithm is not practical
because the localized region of support L? is typically ir-
regularly shaped (requiring multiple square tiles to cover
it). As will be shown, an output-pruned 2-D FFT algo-
rithm exists which does not require complex modulation
or multiple invocations to compute DFT coefficients on
square tiles, thereby avoiding the primary computational
cost of the tiling approach.

III. RECURSIVE PRUNING OF THE RADIX-(2 X 2)
2-D FFT

The discussion of the development of the rectangularly
pruned 2-D FFT algorithm in Section II-B serves as the
starting point for the development of the recursively
pruned 2-D FFT algorithm. We begin by recalling the
steps involved in the output pruning of a radix-(2 X 2)
FFT algorithm for a square localized region of support L*
with sides that are a power of two in length and having
its lower left corner at the origin of the 2-D frequency
space. This provides familiarity with the data flow in the
algorithm. Then, by relaxing all constraints on the output
localized region of support (except that L C R?) and ex-
amining pass by pass which data points (input, interme-
diate and output) are absolutely necessary for the calcu-
lation of the output points on L?, regularities are observed
that allow for a recursive determination of the necessary
data points in each pass of the radix-(2 X 2) 2-D FFT
algorithm. The locations of the necessary data points are
kept in a 2-D logical matrix (one per pass) that is used as
a lookup table within the 2-D FFT routine. The determi-
nation of the logical matrices is computationally inexpen-
sive since it involves only data comparisons and the set-
ting of logical flags. The computational savings that are
achieved, in most cases, justify the increased algorithmic
complexity.

To illustrate the development and usefulness of the re-
cursively pruned radix-(2 X 2) 2-D FFT algorithm, con-
sider an example that cannot be computed by either of the
pruning algorithms of Section II. Assume an arbitrary lo-
calized region of support L? for the set {X; (k;, k,)}, as
shown in Fig. 10(a). Each of the output points is assigned
a lowercase letter. The region L? is clearly not connected
and is not square. We begin by determining which output-
pass butterflies compute the output points on L. Recall
the matrices in Fig. 7 and (10). Observe in Fig. 10(a)
that, for example, points ‘a’ and ‘j ’ in pass three may be
calculated using (10a) and (10d) (which represent a half
or partial butterfly) and require as input points X,(3, 3),
X>(3,7), X5(7, 3), and X,(7, 7). The input points required
in pass three are the output points of pass two. These are
shown in Fig. 10(b). Likewise, the input points of pass
two are the output points of pass one and these are shown
in Fig. 10(c). Finally, it is clear from Fig. 10(c) that all
the signal domain points are required as input to pass one,
as expected.

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT 1347
k Ak Ak
j d aj| di aj
2
L
< i i ci
ble|flglh e| £] gfbh| e] £] gjbhl
alad d il 4 aj
k2 i ci k2 k2
< e} £l g|bh| e] £] g|bh > ~
L >

(a) (b) (c)

Fig. 10. (a) The required output points, *‘a’’ through **j.”” on the localized region of support L? (pass = 3). (b) The output
points of pass two needed as input points to pass three (pass = 2). (¢) The output points of pass one needed as input points to
pass two. All N?/4 full butterflies are required in pass one (pass = 1).

ci

e | f jg | bh

Fig. 11. The pattern of output points in pass 2 replicated in each quadrant
of the N by N matrix.

TABLE 1
THE OUTPUT POINTS TO BE COMPUTED BY EACH BUTTERFLY IN THE LOWER LEFT QUADRANT OF FIG. 10(b) FOR Passp=2. THE
COMBINATIONS OF (10) ARE ASSIGNED A LoGicAL CODE WHICH IS STORED IN THE LoGICAL MATRIX OF PASS 2, AS SHOWN IN FIG.
12.

Required Output Points

X\ ky + N k X. <k ky + N X, ky + k, + N
ky ky Xk, ky) AT T e AT 2T e 2T e Eq. (10)
00 yes no yes no a) ¢)
10 no yes no no b)
01 yes no yes no a) ¢)
11 no no yes yes c)d)
oa=log,(N) —p+ L
Bl
€]¢

Fig. 12. The logical matrix for pass

two used to compute the output points

of Fig. 11.

By working through the example above, and others in-
volving N > 8 (N = 16, 32, 64, - - *), it is apparent that
the pattern of required output data points for a particular
pass, p, repeats itself every N/2°¥® 7 rows and col-
umns of the N by N output matrix. For example, in Fig.
10(b), where p = 2, the pattern shown in Fig. 11 is re-
peated every N/2°2™ =7 = 8/2°~% = 4 rows and col-
umns; that is, in each quarter of the entire matrix. Fur-
thermore, the dimensions of the repeated pattern in pass

p indicate that
N 2
<210g2(N) -p+1 >

radix-(2 X 2) butterflies are required to compute the out-
put data points in the repeated pattern. Again, forp = 2
and the pattern in Fig. 11, (N/2°=™ P+ =
(8/2°2*")? = 4 butterflies are required. It is only nec-
essary to store one code for each butterfly to indicate
which branches of the butterfly are required to compute
the desired output data point or points; that is, which of
the equations (10) to compute. Since there are four output
points per radix-(2 X 2) butterfly, there are 2* = 16 pos-
sible combinations of equations (10). Each possibility is
assigned a logical code and the code for each butterfly is
stored in the logical matrix at a location corresponding to
that butterfly. We conclude that, for each pass of the out-

1348 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 3, MARCH 1993

TABLE II
THE RECURSIVE PROCEDURE THAT PRODUCES THE LOGICAL MATRICES FOR
OUTPUT PRUNING OF THE RaDIx-(2 X 2) 2-D FFT

A recursive algorithm to calculate the output-pruning logical matrices.

Code Equation
0001, (10a)
Assign logical codes to the butterfly equations 0010, (10b)
0100, (10d)
1000, (10c)

quadrantMask « {0001,, 1000,, 0010,, 0100,}
doAllButterflies « 11111111,

PROCEDURE setOutputPruneMatrixRecursive [
INPUT : L2Matrix — a 2-D square array of byte containing indicators for the desired
and undesired output data points of the pass
numberOfPoints — the dimension of L2Matrix

OUTPUT : outputPruneMatrix — a I-D array of 2-D square logical matrices, one for
each pass of the FFT algorithm |

BEGIN
passNumber « LOG,[numberOfPoints]
IF passNumber = 1 THEN
outputPruneMatrix[1]{0}(0] «- doAliButterflies
ELSE
nBy2 ¢ numberOfPoints/2
allButterflies « TRUE
FOR k, =0 TOk, <nBy2 STEP 1
FOR k, =0 TO k, <nBy2 STEP 1

*

* Examine each output point in the radix—(2x2) butterfly.
* If the point is required, add it to the marker.
*)

maskIndex « 0
marker « 0
FOR i =k, TO i < numberOfPoints STEP nBy2
FOR j =k, TO j < numberOfPoints STEP nBy2
IF L2Matrix[i](j] = a desired output point THEN
marker « marker OR quadrantMask[maskIndex]
END IF
INCREMENT maskiIndex BY 1
END FOR
END FOR
*
* The marker now indicates which of the four radix—(2x2) butterfly
* output data points are required. Assign the marker to the
* gppropriate location in the outputPruneMatrix
*

outputPruneMatrix{passNumberl{k,){k,} ¢— marker
IF allButterflies is TRUE AND marker does not indicate that
all output data points are required THEN
allButterflies « FALSE
END IF
END FOR (* k, *)
END FOR (* k, *)

IF allButterflies is TRUE THEN
outputPruneMatrix[passNumber][0}[0] « doAllButterflies

END IF
*

* Now find the outputPruneMatrix for the previous FFT pass using the

* outputPruneMatrix of this pass
*

setOutputPruneMatrixRecursive[outputPruneMatrix[passNumber],
numberOfPoints/2, outputPruneMatrix]
END IF
END PROCEDURE
The logical matrices for the entire FFT algorithm are computed as follows:

outputPruneMatrix[1] = a pointer to a 1x1 array of byte

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

1349

TABLE Il (Continued.)

outputPruneMatrix[2) = a pointer to a 2x2 array of byte

outputPruneMatrix[p] = a pointer to a

N

2loga(N) -p + 1

numberOfPoints « dimensions of R?
finalOutputMatrix « L?

STogaN) 71 array of byte

setOutputPruneMatrixRecursive/[finalOutputMatrix, numberOfPoints,
outputPruneMatrix]

put pruned 2-D FFT algorithm, it is necessary to store
(N/2°e®™ -P+ 12 Jogical codes, each of which indicates
which of the four radix-(2 X 2) butterfly output data points
to compute.

Below, we show by example how to construct a logical
matrix, the entries of which indicate which output data
points to compute for each butterfly in a particular pass
of the FFT algorithm.

Example 1

Let us construct the logical matrix for pass p = 2 and
N = 8 and the output data points shown in Fig. 10(b).
The pattern of required coefficient repeats every
N/2°2®™ =P = 4 rows and columns. The indices to con-
sider are

N

T w1

and kz = 0, 1.

(15)

The outputs of each butterfly in the lower left quadrant of
Fig. 10(b) are now considered; that is, those butterflies
having primary indices given by (15). The portion of each
butterfly required to compute these output points is deter-
mined and a unique character code, indicating that por-
tion, is entered in the logical matrix for pass two at the
location given by the (k;, k,) tuple. The results are given
in Table 1. For example, for k; = k, = 0, examination of
Fig. 10(b) (or Fig. 11) indicates that X,(0, 0) and X,(0,
2) are needed and therefore (10a) and (10c) need to be
computed. This is the first table entry. We might assign
the following character codes to the different combina-
tions of equations (10) shown in Table I {a), O} = ‘¢,
{b)} = ‘B, {¢), d)} = “y’. Then the logical matrix for
pass two would look like Fig. 12. O

Notice that the input data points needed to compute the
output data points (on L?) are themselves the output data
points of the next to last pass of the FFT algorithm.
Likewise, the input data points needed to compute the
output data points of the next to last pass are themselves
the output data points of the second to last pass of the FFT
algorithm, and so on. This suggests a recursive procedure
to determine the logical matrix of each pass. The recur-
sive algorithm is outlined in Table II.

The algorithm to compute the output data points on L
is summarized as follows.

Algorithm 2: The Recursively Output-Pruned 2-D FFT

1) Preparation: given L?, determine the logical mat-
rices that indicate the required output data points of
passes 1,2, * - -, log, (N). Use the algorithm of
Table II.

2) Calculation of the output-pruned 2-D FFT:

FOR each pass in the radix-(2 X 2) FFT
FOR each radix-(2 X 2) butterfly
find (in the outputPrune Matrix) the logical
code corresponding to the current butterfly
compute the required butterfly output points
(using equations (10)) indicated by the logi-
cal code
END FOR
END FOR |

In step 2) the algorithmic reference to the logical matrix
manifests itself as logical comparisons and program
branches to the appropriate piece of code.

The computational price of this algorithm is not very
high because a logical-comparison-and-branch is much
faster than a complex multiplication or addition. Further-
more, if multiple 2-D FFT’s are to be performed for the
same localized regions of support L?, as is true for the
examples in Section V, the cost of the extra programming
logic becomes insignificant.

The main advantages of this algorithm are its generality
and its avoidance of the use of the 2-D DFT modulation
theorem. The algorithm is general in that there are no re-
strictions on the localized region of support L% it may
have holes, be discontinuous or irregular in shape. The
algorithm generates the minimum number of computa-
tions for any given L?. Unfortunately, because of this gen-
erality, it is not possible to analytically determine the
number of calculations for a given L.

The above procedure may be followed to develop an
input-pruned 2-D FFT algorithm. The input-pruned al-
gorithm is different in that it considers, in each pass,
which combinations of the S,,,”” terms in equations (10)
are required for a specified L?, instead of considering in
each pass which combinations of equations (10) are re-
quired, as does the output-pruned algorithm.

1350

N I

ey

N-1

ke

(e) N-1 N-1

Fig. 13. The set of localized regions of support used to test the recursively
pruned radix-(2 X 2) 2-D FFT, and the row—column pruned 2-D FFT al-
gorithms.

IV. EvarLuaTions of 2-D FFT OutpPuT-PRUNING
ALGORITHMS FOR SOME TypICAL L2

In this section, the recursively pruned radix-(2 X 2)
2-D FFT, the pruned row-column 2-D FFT, the unpruned
radix-(2 X 2) 2-D FFT, and the unpruned row-column
2-D FFT algorithms are empirically compared in terms of
computation time for a variety of typical localized regions
of support L>. Results are given graphically and dis-
cussed.

The tested regions of support are shown in Fig. 13. The
2-D DFT is defined over a region of support R? with N,
= N, = 64. Execution times are shown in Fig. 14 for
each of the algorithms discussed in Sections II and III
(row-column 2-D FFT, radix-(2 X 2) 2-D FFT, pruned
row—column 2-D FFT, recursively pruned radix-(2 X 2)
2-D FET). The radix-(2 X 2) 2-D FFT algorithm is about
10% faster than the row-column 2-D FFT algorithm. In
many computational environments a complex multiply re-
quires as much time as a complex addition, and therefore
we would expect an improvement of about 12% in com-
putational speed [6]. The computational savings achieved
using the recursively pruned radix-(2 X 2) 2-D FFT com-
pared to using the (unpruned) radix-(2 X 2) 2-D FFT al-
gorithm are shown in Fig. 15. The percentage savings was
calculated using the method of [2].

The pruned row-column 2-D FFT algorithm clearly
performs well when the localized region of support is
square and is small. This is to be expected because, for
these localized regions of support, many columns of coef-
ficients are not computed. For all other localized regions
of support, the recursively pruned radix-(2 x 2) 2-D FFT
algorithm is the most computationally efficient algorithm.
Of course, as the area of the localized region of support

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41. NO. 3, MARCH 1993

(a) (b) (©) @ (e) (f) (g)
Laocalized Region of Support

[] Row-Column FFT
I Radix-(2x2) FFT

B Pruned Row-Column FFT

[l Recursively Pruned Radix~(2x2) FFT

Fig. 14. A comparison of the execution times for the radix-(2 X 2) 2-D
FFT, the row-column (R-C) 2-D FFT, the recursively pruned radix-(2 X
2) 2-D FFT, and the row-column pruned 2-D FFT algorithms for each
localized region of support shown in Fig. 13.

33
n

w
>

—
[

sl

n

Percentage Savings
=

-
sfaas

(a) (b) (c) (d) (€) () (g)
Localized Region of Support

Fig. 15. The computational savings achieved using the recursively pruned
radix-(2 x 2) 2-D FFT algorithm compared to using the radix-(2 X 2)
2-D FFT algorithm for each localized region of support shown in Fig. 13.

approaches that of R?, the recursively pruned radix-(2 X
2) 2-D FFT algorithm requires as much time as the (un-
pruned) radix-(2 X 2) 2-D FFT algorithm.

V. EVALUATION OF THE RECURSIVELY PRUNED 2-D
FFT N PracTicAL MIXED [9]-[13] SiGNAL
PROCESSING ALGORITHMS

Here, we compare the computational efficiency of the
radix-(2 X 2) 2-D FFT to that of the recursively pruned
2-D FFT in two practical 3-D signal processing algo-
rithms. In the first problem, a 3-D spatially planar pulse
[14] is enhanced using a combined 2-D DFT/1-D LDE
discrete transform/spatiotemporal mixed domain (MixeD)
filter [9]-[11]. The 2-D DFT coefficients corresponding
to the spatially planar pulse signal are confined to a nar-
row wedge-shaped region of support. By using the recur-
sively pruned 2-D FFT to compute the DFT coeflicients,
instead of the (unpruned) radix-(2 x 2) 2-D FFT, a com-
putational saving [2] of about 20% is realized. In the sec-
ond problem, the 2-D DFT is combined with a 1-D spec-

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

tral estimation method to detect 2-D objects moving in an
image sequence and accurately estimate their trajectories
[13]. The localized region of support for the DFT coeffi-
cients required by the algorithm is comprised of several,
separate points. A computational saving [2] of about 83%
is achieved by using the recursively pruned 2-D FFT al-
gorithm.

A. The Enhancement of a 3-D Spatially Planar Signal
Using a 2-D DFT/1-D LDE MixeD Filter

In this section the (unpruned) radix-(2 X 2) 2-D FFT
algorithm and the recursively pruned radix-(2 x 2) 2-D
FFT algorithm are compared computationally for an ap-
plication where a 3-D spatially planar pulse is enhanced
using a combined 2-D DFT/1-D LDE transform/spatio-
temporal mixed domain (MixeD) filter. The filter design
method is taken from the examples presented in [9]-[11],
where a more complete discussion of the MixeD filter
method can be found. The 2-D DFT/1-D LDE MixeD
filter is implemented as follows.

Algorithm 3: The 2-D DFT/1-D LDE MixeD Filter

1) The 2-D DFT is applied along the spatial dimen-
sions, n, and n,, of the input signal x(n,, np, ns), giving
the MixeD signal X (k;, k», n3).

2) The complex-valued sequences along n3, one for
each 2-tuple (k;, k,), are input to 1-D LDE filters. The
result is the mixed domain sequence Y(k,, k,, n;). Note
that there are NN, such 2-tuples and, hence, NN, 1-D
LDE filters are (in general) necessary.

3) The 2-D inverse DFT is applied along the &, and k,
dimensions of Y(k,, k,, n3) giving the desired signal y(n,,
ny, n3).

Of primary concern here is the 2-D DFT portion of the
MixeD filter, where the recursively pruned 2-D FFT al-
gorithm is to be used. Next, enough information is pre-
sented to justify the choice of a localized region of sup-
port L?.

The class of spatially planar (SP) signals is important
in many multidimensional signal processing problems, in-
cluding seismic data analysis and image enhancement.
One temporal sample (i.e., an image frame) of a 3-D SP
pulse signal shown in Fig. 17(a). In general, a 3-D dis-
crete signal, x(n;, ny, n3), is SP if it constant in all sur-
faces

an; + apny + agns = d, vd € R (16)
with ay, ay, a3 € R and ny, ny, n; € Z, where Z is the set
of integers.

It may be shown [14] that the 3-D DFT of a SP signal
x(ny, ny, ns) yields 3-D discrete frequency domain coef-
ficients, X; (k;, ky, k3), that are zero everywhere except on
the line L(m,, m,, ms), which has the localized region of
support

m n, ms
L’ ={(m,,m2,m3) a—=_=—’ meZ:;.
1

2% (&5}

1351

A passband enclosing the line L(m,, m,, m;) will selec-
tively enhance the 3-D SP signal.

Ideal beam and cone shaped 3-D passband shapes have
been described and discussed [14], [15]. A cone filter is
generally preferred over a beam filter for selectively en-
hancing 3-D spatially planar signals because the cone
shaped passband is equally selective in the 3-D frequency
space, irrespective of the distance from the origin of the
frequency space [15].

A thin pyramidal shaped passband, such as is shown in
Fig. 16, can be used to approximate a cone shaped pass-
band [11]. The thin pyramidal shaped passband is realized
by the 2-D DFT/1-D LDE MixeD filter as follows. The
2-D DFT is applied along the spatial, n, and n,, dimen-
sions. The required 2-D localized region of support £ is
the projection of the thin pyramidal passband onto the k;
— k, plane. £7 is an isosceles triangle centered on the
line L? that is the projection of L* on to the k; — k, plane.
Clearly, only the 2-D DFT coefficients on £ are re-
quired. The recursively pruned 2-D FFT can be used to
efficiently compute the 2-D DFT coefficients on £°. The
1-D LDE filters, which are applied to the complex-valued
sequences along ns, are confined to £2. It remains to char-
acterize the LDE filter passbands.

The 2-D DFT of a spatially planar pulse yields com-
plex-valued sequences in n; that are sinusoidal in the
steady state [10], [12]. A general spatially planar signal
is also a linear trajectory signal [14] and may therefore be
written in the form

x(ny, ny, n3) = x(ny — 8ymy, ny — 03, 0) (17)
where
(51 = "% and 52 = _%
o [25]

and where §, , are the vertical/horizontal (row/column)
displacements of the SP image in pixels per frame. The
shift property of the 2-D DFT is employed to show that
the 2-D DFT of a SP (and therefore linear trajectory) sig-
nal x(n,, n,, 1) over the variables n; and n, is given by

X(ky, ky, n3) = DFT(kl,kz)[x(nl — 8in3, ny — 6,13, 0)]
= X(ky, ky, 0) Wi i Wizl

or, assuming Ny = N, = N

X(ki, koy k3) = X(ky, kp, QY WREHED - (18)
where DFT, i, [*] is the forward 2-D DFT operator and,
hence, X (k;, k3, n3) = DFT, i1,y [x (11, nz, 0. Equation
(18) implies that the passband sequences X (k;, ky, 1) at
each 2-tuple (k,, k) are complex sampled sinusoids that
may be selectively transmitted by employing LDE filters
that are characterized by narrow-band bandpass magni-
tude frequency response functions having normalized
center frequencies given by

2
viki, ky) = N(alkl + 82kr). 19)

1352 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

Thin Pyramidal
Passband

k

1

Fig. 16. Thin pyramidal MixeD filter passband. The nonzero impulse re-
sponse sequence 2-tuples are within the shaded fan-shaped localized region
of support £2 on the k, — &, plane.

We choose the bandwidths B (k,, k) of these narrow-band
bandpass LDE’s to be proportional to the center frequen-
cies v(k;, ky) [10], [12], so that

Bk, ky) = Kv(ky, k),

K > 0, K e R, and KX is constant.
(20

Since the LDE filters are applied along n;, the 1-D band-
widths given in (20) correspond to the wedge-shaped por-
tion of the desired thin pyramidal passband in the k; di-
rection (see Fig. 16).

This completes the description of the MixeD filter.

B. MixeD Filter Outputs and Execution Timing
Comparison

In this section, the MixeD filter is used to enhance a
3-D spatially planar pulse in the presence of another, sim-
ilar pulse and Gaussian noise. The MixeD filter algorithm
is implemented once with the radix-(2 X 2) 2-D FFT al-
gorithm, and once with the recursively pruned 2-D FFT
algorithm and £7 as previously defined (see Fig. 16). The
total execution times are compared.

Consider a 3-D input sequence given by

x(ny, ny, n3) = xp(ny, ny, n3) + xy(ny, ny, n3) (21)

where xp (n, n,, n3) is a 3-D spatially planar pulse having
an intensity value 127 within a distance of 10 voxels (i.e.,
volume elements) of the 3-D plane 0.47n; — 1.00n, —
0.23n; = —64, and an intensity of zero otherwise. The
3-D pulse is therefore 20 voxels thick about the plane and
is shown in Fig. 17(a), spatially bounded in n, and n,.
The 3-D signal xy(n;, ny, n3) is defined as zero-mean
Gaussian random noise having a voxel intensity variance
of 448, corresponding to a signal to noise ratio over the
volume of the 3-D pulse xp(n;, n,, n3) equal to —10.5
dB, superimposed on an undesired 3-D pulse x' (n;, n,,
ny) that is identical to xp(n;, n,, ny) except that it sur-
rounds the plane 0.47n; — 1.00n, — 2.00n; = —130. The
undesired pulse x'(n, n,, n;) is shown in Fig. 17(b), spa-
tially bounded in n; and n,. This is a good example of a
spectral filtering problem that does not lend itself to the
enhancement of xp(n;, n,, n3) using 1-D or 2-D methods
because xp(n;, n,, n3) and x’'(n,, n,, n;) have identical
magnitude spectra in their 1-D and 2-D DFT’s. A sample
frame of x(n,, n,, n3), for n; = 60, is shown in Fig. 17(c)
where the 3-D pulses are not visible in the noise. The
signal is spatially and temporally bound with Ny = N, =
128 and N5 = 100.

The MixeD filter design parameters are chosen as fol-
lows. All the 1-D LDE filters are bandpass with center
frequencies determined by (19), have second-order ana-
log prototype Butterworth transfer functions, and are de-
signed by bilinear transformation. They have bandwidth
proportionality constants X = 0.05. The fan-shaped re-
gion of support on the k; — k, plane is chosen to have a
half angle ¥ of five degrees, as shown in Fig. 16. The
LDE filters were applied only to the MixeD sequences on
the region of support £2.

The typical output sequence y(n;, ny, ns3) from the
MixeD filter is shown in Fig. 17(d) for the 60th frame,
y(n,, ny, 60). The 3-D pulse xp(n;, ny, n3) is clearly re-
covered in this image, with the signal-to-noise ratio im-
proving from —10.5 to 18 dB, while the second 3-D pulse
x'(ny, ny, n3) is attenuated by 11 dB.

The execution times of the MixeD filters using un-
pruned and pruned 2-D FFT algorithms are shown in Ta-
ble III. Two methods were used [2], [3] to compute the
percentage time savings.

C. MixeD Moving Object Detection and Trajectory
Estimation [13]

A method that detects 2-D objects moving on straight
lines and at constant velocities (that is, having linear tra-
jectories [14]), and that is able to estimate their trajecto-
ries is useful in applications such as night-sky satellite
tracking, land and air vehicle monitoring, and storm cloud
tracking. The MixeD solution to the problem [13] com-
bines the 2-D DFT with a 1-D spectral estimation method,
such as the modified forward-backward linear prediction
(FBLP) method [17]. The details of the MixeD moving
object detection and (linear) trajectory estimation method

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

1353

(c)

(d)

Fig. 17. Frame 60 of (a) the desired spatially planar (SP) input signal xp (1, 12, ns), (b) the undesired SP input signal x' (n,,
n,, n3), (c) the input signal x (1, na, n3), and (d) the output signal y(n;, 12, n3).

TABLE 111

COMPARISON OF EXECUTION TiMES FOR MIXED FiLTERS USING Unp

RUNED AND RECURSIVELY PRUNED 2-D FFT ALGORITHMS. THE

FILTERS WERE USED TO ENHANCE THE SIGNAL Xp(1(, M2, 13) OF THE INPUT SEQUENCE EQUATION (21)

Execution Time

1

Time Savings

=

MixeD Filter Design (Seconds) Inax 2y =1/1, -1 B1=1-1
Radix-(2 X 2) 2-D FFT 2906.9
LDE filters on £ 2906.9 2906.9 0.0% 0.0%
Recursively Pruned 2-D FFT. 2417.4 .
LDE filters on £ 2417.4 5506.9 20.2% 16.8%

are presented elsewhere [13]. Here, we present enough of
the method to motivate the use of the recursively pruned
2-D FFT algorithm.

Consider the 3-D input sequence x (n;, 1, n3) as a se-
quence of discretely sampled images in n3. A spatiotem-
poral domain model for 2-D linear trajectory objects is

o

x(m, my,) = 2 ogm = S,y = dona, 0) - (22)

where ny, ny, 13 € N, o,(ny, ny, 0) is the sth of O objects
at n; = 0, and §;; and 3, are the sth object’s vertical and

horizontal displacement coefficients, respectively, in pix-
els per frame (ppf). It is easily shown [14] that the energy
of each moving object is confined to planes in the
3-D discrete frequency domain that satisfy

6S1k| + szkz + k3 = mN, m, k[, k:)_, k3 eN (23)

when N, = N, = N; = N. The planes for which m # 0
are aliased versions of the plane for m = 0. However,
they are of little consequence because the majority of a
typical object’s energy is concentrated within a circle of
radius 7 /3 centered at the origin of the plane for which
m = 0. We hereafter consider only the plane for which m
= 0.

1354

nl

n2

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

Frequency Domain

2-D DFT along n1 k1

n3

A Linear Trajectory
Sequence

and n2

n3

Mixed Domain

Fig. 18. A linear trajectory object in the spatiotemporal domain and its representation in the frequency domain and in the mixed
domain.

When the 2-D DFT is applied to x(n,, n,, n3) along n;
and n,, that is,

N-1 N-1
X(ky, ky, n3) = Zo Zox(nn, ny, n3)
n=0m=

27
* exp [‘J W (niky + ”2k2)}

I

ZOJO(k ky, O 2x
Rt Is R25)exP —JW

© (00K + 5:2"2)"3} @49

the result is 1-D complex-valued sinusoidal sequences
along n; at every (k;, k) 2-tuple on the k; — k, plane.
This is illustrated in Fig. 18.

If three points lying on a plane can be found, the equa-
tion for that plane can be determined. Then, using (22)
and (23), the coeflicients, 8;; and é,,, that describe the
trajectory of the sth object can be found. Three points can
be found using MixeD sequences at selected (k;, k,) 2-
tuples as input to the modified FBLP spectral estimation
method. For a particular (k, k,) 2-tuple, the modified
FBLP method returns frequency estimates for the O sin-
usoids in the MixeD sequence along n;. From (24), the
estimate of the sth frequency is

bk, k) = 2 Bk + Buak) @5)
Then, as mentioned, the set of three (or more) points {(k;,
ky, 95(ky, ky))} can be used to determine the equation of

the plane that corresponds to the sth object and, hence,
that object’s trajectory coefficients.

The locations of the selected MixeD sequences on the
ki — k, plane define the localized region of support L?. In
practice, ten or so MixeD sequences are used. L? typically
resembles Fig. 19. The 2-D DFT coefficients for L? can
be efficiently computed by the recursively pruned 2-D FFT
algorithm.

D. MixeD Moving Object Detection and Trajectory
Estimation Results and Execution Timing Comparison

Here, we use the MixeD moving object detection and
trajectory estimation algorithm to track three LT objects
in an image sequence. The algorithm is implemented once
with the radix-(2 X 2) 2-D FFT algorithm, and once with
the recursively pruned 2-D FFT algorithm. The execution
times are compared.

The experiment is identical to the example presented in
[13]. The input sequence was N; X N, = 128 X 128 pix-
els spatially and N; = 100 frames in length. It consisted
of three LT objects. The trajectory velocity and direction
are defined as v = V& + 82, and ¢ = tan™' (§,,/8,)),
respectively. The trajectories were: object 1, ¢ = 40°, v
=2 ppf; object 2, ¢ = 53°, v = 0.5 ppf; object 3, ¢
= —47°, » = 3 ppf. Objects 1 and 2 remained in the
sequence for all 100 frames while object 3 left at frame
61. The trajectory estimates are shown in Fig. 20. The
execution times are given in Table IV. Again, two meth-
ods were used [2], [3] to compute the percentage time
savings. As expected, the algorithm execution was much
faster using the recursively pruned 2-D FFT.

KNUDSEN AND BRUTON: RECURSIVE PRUNING OF 2-D DFT

4

3]

1355

Fig. 19. A localized subregion L*
the points that constitute

ki ke
24| 0
8 |22
20 | 12
21| 8
12|18
12| 12
2% | 2
1315
RS

for the MixeD moving object detection and trajectory estimation algorithm. The locations of

L? are given in the table.

- 0 e b, a9 -V, eV, —4&— V3
60 35
40 3 Fracgdrgoactd
&] 2.5
g 20 PR
g] g 24
- o Z]
s 1 8153
8 .20] s
8 1 13
B U U 054
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

Frame Number

Fig. 20. The estimated trajectory directions

Frame Number

and velocities for the three 2-D linear trajectory moving objects.

TABLE IV
COMPARISON OF EXECUTION TIMES FOR THE MIXED MOVING OBJECT DETECTION AND TRAJECTORY ESTIMATION ALGORITHM USING
UNPRUNED AND RECURSIVELY PRUNED 2-D FFT ALGORITHMS

MixeD Moving Object Detection Execution Time

Time Savings

and Trajectory Estimation (Seconds) Imax 21 = 1/1, =1 t31=1-1
1694.6
Radix-(2 X 2) 2-D FFT 1694.6 0.0% 0.0%
1694.6
. 924.8
Recursively Pruned 2-D FFT 924.8 1694.6 83.3% 45.4%

VI. CONCLUSIONS

For any localized region of support that is not square,
the recursively pruned radix-(2 x 2) 2-D FFT algorithm
is computationally more efficient than other 2-D FFT
pruning algorithms [5], [7], (8], especially those based on

existing 1-D FFT pruning algorithms [2]-[4]. Two prac-
tical, MixeD signal processing [91-[13] examples were
presented which illustrate the computational savings that
can be achieved using the recursively pruned 2-D FFT
algorithm. Other applications, involving many 2-D DFT
operations and multiple or irregularly shaped localized re-

1356 [EEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 3, MARCH 1993

gions of support (L?), should also be able to benefit from
using the recursively pruned 2-D FFT algorithm.

The recursively pruned algorithm is based on a radix-
(2 x 2) 2-D FFT algorithm. This algorithm is faster than
the row~column decomposition based 2-D FFT algorithm
since it requires 25 % fewer complex multiplications. This
accounts for a large percentage of the computational gain
of the pruning algorithm. By basing the recursively pruned
algorithm on a 2-D FFT algorithm of some other radix,
say radix-(4 X 4), or on a combined factor (split-radix)
algorithm [16], even larger computational gains might be
realized. For example, a combined-factor algorithm re-
quires only 36% of the complex multiplications required
by a radix-2 row-column decomposition algorithm.

Because many sinusoidal transforms have fast algo-
rithms similar to those used to compute the DFT, we be-
lieve that the recursive pruning method may be adapted
to include other transforms [18]. Recursive pruning may
also be extended to higher dimensional (> 2) transforms.

ACKNOWLEDGMENT

The authors wish to thank S. T. Nichols and N. R.
Bartley for their helpful suggestions concerning this con-
tribution.

REFERENCES

{l] E. O. Brigham, The Fast Fourier Transform and lts Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

[2] J. D. Markel, “‘FFT pruning,”” IEEE Trans. Audio Electroacoust.,
vol. AU-19, pp. 305-311, Dec. 1971.

[3] D. P. Skinner, '‘Pruning the decimation-in-time FFT algorithm,
IEEE Trans. Acoust. . Speech, Signal Processing, vol. ASSP-24, pp.
193-194, Apr. 1976.

[4] T. V. Screenivas and P. V. S. Rao, *‘FFT algorithm for both input
and output pruning,”’ IEEE Trans. Acoust. Speech, Signal Process-
ing, vol. ASSP-27, pp. 291-293, June 1979.

[5] L. Capodiferro, ‘*Two-dimensional FFT and FFT-pruned algorithms
in the context of HDTV images,"’ in Signal Processing of HDTV, L.
Chiariglione, Ed. . New York: Elsevier, 1988.

6] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Sig-
nal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.

7] M. R. Smith and S. T. Nichols. *‘Efficient algorithms for generating
interpolated (zoomed) MR images.'" Mag. Res. Med., vol. 7, pp.
156-171, June 1988.

[8] T. Smit, M. R. Smit, and S. T. Nichols, ‘‘Efficient sinc function
interpolation technique for center padded data,”" [EEE Trans. Acoust. ,
Speech, Signal Processing, vol. 38, pp. 1512-1517. Sept. 1990.

[91 A. A. Choudhury and L. T. Bruton, ‘‘Multidimensional filtering us-
ing combined discrete Fourier transform and linear difference equa-
tion methods.”” IEEE Trans. Circuits Sysi., vol. 37, pp. 523-531.
Feb. 1990.

[10] R. W. Issler, ‘'Tracking and enhancement of objects in image ‘se-
quences using 3-D frequency planar combined DFT/LDE filters."’
M.Sc. thesis, Dep. Elec. Eng., Univ. of Calgary, June 1990.

[11] K. S. Knudsen and L. T. Bruton, **Mixed domain filtering of muiti-
dimensional signals,”” JEEE Trans. Circuits Syst. Video Technol., vol.
1, pp. 260-268. Sept. 1991.

[12] R. W.Isslerand L. T. Bruton, *‘Tracking and enhancement of objects
in image sequences using 3-D frequency planar combined DFT/LDE
filters,”” in Proc. IEEE Int. Symp. Circuits Syst., New Orleans, LA,
May 1990, pp. 999-1002.

[13] K. S. Knudsen and L. T. Bruton, **Moving object detection and tra-
jectory estimation in the transform/spatiotemporal mixed domain,””
in Proc. 1992 IEEE Int. Conf. Acoust. Speech, Signal Processing,
San Francisco, CA, Mar. 23-26, 1992, vol. 3, pp. 505-508.

f14] L. T. Bruton and N. R. Bartley, ‘'Three-dimensional image process-
ing using the concept of network resonance,”” JEEE Trans. Circuits
Svst., vol. CAS-32, p. 664-672, July 1985.

[15] L. T. Bruton and N. R. Bartley, “*The design of highly selective
adaptive three-dimensional recursive cone filters,”” IEEE Trans. Cir-
cuits Syst., vol. CAS-34, pp. 775-781, July 1987.

[16] H. R. Wuand F. J. Paoloni, **The structure of vector radix fast Four-
ier transforms,”” JIEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, pp. 1415-1424, Sept. 1989.

[17] S. S. Haykin, Adaptive Filter Theory.
tice-Hall, 1986.

[18] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal
Processing. Heidelberg: Springer-Verlag, 1975.

Englewood Cliffs, NJ: Pren-

Knud Steven Knudsen (S’82) was born in 1962
in Kelowna. British Columbia, Canada. He re-
ceived the B.Sc. degree in computer engineering
in 1984 and M.Sc. degree in applied sciences in
medicine in 1987, both from the University of Al-
berta. Presently he is working towards the Ph.D.
degree at the Department of Electrical and Com-
puter Engineering, University of Calgary.

In 1986 he worked as a Research Assistant at
the Universitit Ulm, Germany. From 1987 to 1989
he was employed by MacDonald Dettwiler and
Associates of Richmond, British Columbia. His research interests include
multidimensional signal processing, nonlinear mathematics, neural net-
works. and genetic algorithms.

Leonard T. Bruton (M'71-SM*80-F’81) is a
Professor of Electrical and Computer Engineering
at the University of Calgary, Calgary, Alberta,
Canada. His research interests are in the areas of
analog and digital signal processing. He is partic-
ularly interested in the design and implementation
of microelectronic digital filters and the applica-
tions of multidimensional circuit and systems the-
ory to digital image processing.

