IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1993 533

The Uniqueness in Designing Multidimensional
Causal Recursive Digital Filters Possessing
Magnitude Hyperspherical Symmetry

Xiaojian Liu and Leonard T. Bruton, Fellow, IEEE

Abstract—It is shown that magnitude hyperspherically sym-
metric transfer functions of multidimensional (MD) causal re-
cursive digital filters must have numerator and denominator
polynomials that are separately magnitude hyperspherically
symmetric. Further, the exact reference-domain magnitude-
hyperspherically symmetric denominator polynomial is of infi-
nite order, possessing only one free parameter, and the magni-
tude hyperspherically symmetric numerator polynomial itself
has to be a radial even function. The corresponding MD design
problem is shown to be essentially a one-dimensional design
problem. Filter transfer functions having good symmetry and
moderate degree can be designed by using the presented proce-
dure.

1. INTRODUCTION

HE DESIGN of two-dimensional (2-D) circularly

symmetric and 3-D spherically symmetric filters has
been studied extensively [1]-[3] and a number of useful
numerical design procedures have emerged [4]-[6]. How-
ever, closed analytic solutions for such symmetrical filters
do not so far exist and the extensions to the more general
case of n-dimensional (n-D) hyperspherical symmetry (n
> 3) have not been established.

In general, numerical design methods benefit signifi-
cantly from a priori knowledge of explicit relationships
between the coefficients of the numerator as well as
denominator polynomials; for example, by allowing the
number of variables of optimization to be reduced and by
choosing suitable initial values of these variables. In this
contribution, such explicit relations on the coefficients are
derived for n-D hyperspherically symmetric causal recur-
sive filter transfer functions.

The transfer function of an n-D recursive digital filter,
say H,(z), is a rational function of the variables z, (i = 1
to n) with

(V

where z = (2, z,,"*, z,)7 (the superscript T denotes the
transpose), 7; is a positive constant and

Z' = e’rlTl ,

i =0 tjo;
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is the complex frequency in the i-th frequency dimension.
Thus, the frequency dependence of the transfer function
is not rational. In order to obtain a rational transfer
function in the so-called equivalent frequency variables,
which is more plausible and familiar, the bilinear transfor-
mation

z;—1

i 5;T;
c+ 1

= tanh —
tan 5

l/;[_:

zl

is applied to the z-domain transfer function H,(z). The
obtained bilinear transformed transfer function (or the
U-domain transfer function with ¥ = (y,, ¥, ¥,)7),
say

HW) = Hy (D=4 470 - v

is then a rational function in the variables o, (i = 1 to n)
with

=96+ je;,

which is called the complex reference frequency (or the
complex equivalent frequency) in the i-th frequency dimen-
sion. The relation between the real frequency w; and the
real reference frequency ¢, (i = 1 to n) is given by

w;T;
¢; = tan—. 2

2
Given the n-D z-domain transfer function H,(z) and
the corresponding Y-domain transfer function H(is), the
squared magnitude frequency responses in the correspond-
ing real frequency domains @ and ¢ (w =
(01, @y, @) and @ = (¢,, @,,"+, ¢,)7) are defined by

Mdz((l)) = Hd(z)Hd(z“)Iz,.:emﬂ.» (i=110n)
and
M?*(¢) = H(jo)H(—je),

where z 7' = (z7',z; -+, 2, )T. We are concerned here
about the symmetries of such functions. In particular, we
say magnitude symmetry (MS) for the w-domain or ¢-
domain symmetries possessed by the (squared) magnitude
responses Mj(w) or M*(¢) and polynomial symmetry
(PS) for the w-domain or ¢-domain symmetries possessed
by the numerator and denominator polynomials of the
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frequency responses H,(z) (z; = ¢/*", i=1 to n) or
H(j¢) themselves. The relationship of symmetries in the
w-domain and ¢-domain is determined by the well-known
mapping properties (2). Many symmetries, such as hyper-
quadrantal symmetry, are preserved over this mapping.
Hence, in most cases, it is sufficient only to consider the
rational transfer function H({) in the reference fre-
quency domain . The reference domain transfer func-
tion H({) can be considered as the transfer function of a
corresponding classical analog filter [7], [8).

In the following, we shall be concerned with the magni-
tude hyperspherical symmetry. However, for easy refer-
ence, the properties of two related symmetries, that are
necessary for the magnitude hyperspherical symmetry,
namely, magnitude hyperquadrantal and magnitude
hyperoctagonal symmetry, are briefly discussed.

A. Magnitude Hyperquadrantal and Hyperoctagonal
Symmetry (MHQS, MHOS)

Definition 1: An n-D filter transfer function H,(z) is
magnitude hyperquadrantally symmetric (MHQS) in the w-
domain, if the value of its (squared) magnitude response
M}(®) is not altered by replacing any of the z;, i =1 to
n, with the respective z; ' in H,(z), or equivalently, any
of the w; with the —w, in M*(w).

Definition 2: An n-D filter transfer function H,(z) is
magnitude hyperoctagonally symmetric (MHOS) in the -
domain, if it is magnitude hyperquadrantally symmetric
and if the value of its (squared) magnitude response
M} (w) is not altered by arbitrarily exchanging the posi-
tions of any of the z; (i = 1 to n) in the transfer function
H,(z) with any other z; (j = 1 to n) in H,(z), or equiva-
lently, all the frequency axes w; (i = 1 to n) are equiva-
lent.

Correspondingly, we define ¢-domain magnitude hyper-
quadrantal and hyperoctagonally symmetry. According to
(2), it is obvious that MHQS and MHOS in the w-domain
involve the same symmetry in the ¢-domain and vice
versa.

In the 2-D and 3-D cases, MHQS is referred to as
magnitude quadrantal symmetry and magnitude cubic
symmetry, respectively [11], [12], and the 2-D MHOS is
referred to as magnitude octagonal symmetry [15].

It was first shown in [11] that the 2-D allpass-free
MHQS transfer function having very strict Hurwitz de-
nominator polynomial possesses 2-D MHQS numerator
and 2-D MHQS separable denominator. This resuit has
been generalized [13] to the MD case and is restated
below:

Theorem 1: An n-D allpass-free reference domain
transfer function H(ys), for which

()

HQ\p) = —, 3)
v g(¥)

where f(¥) and g(¥) are co-prime (or irreducible) poly-

nomials and g() is furthermore a scattering Hurwitz

polynomial [14], is magnitude hyperquadrantally symmet-

ric if and only if the squared magnitudes of the numerator
and denominator, f(je)f(—j¢) and g(jeo)g(—j¢), are
individually hyperquadrantally symmetric and g(is) is sep-
arable in its individual frequency variables, implying that

g(¥) = YEgi('/’i)!

where y is a unimodular constant.

Obviously, this theorem also holds for the correspond-
ing z-domain transfer function, according to the equiva-
lence statement on the MHQS in the w- and the ¢-
domain below Definition 2.

B. Magnitude Hyperspherical Symmetry (MHSS)

Definition 3: An n-D filter transfer function H,(z) is
magnitude hyperspherically (or radially) symmetric (MHSS)
in the w-domain, if the value of its (squared) magnitude
response M?(w) at any frequency point @ in the n-D
w-space only depends on the Euclidian norm ||w| with
loll = Vo + 0 + - + 2.

Correspondingly, we define ¢-domain magnitude hyper-
spherical symmetry. It is evident that a transfer function
H(@), that is, MHSS in, say, the ¢-domain does not retain
the MHSS property under the mapping (2). Further, it is
shown here that a z-domain transfer function H,(z) can-
not be MHSS in the w-domain. However, it is often the
case that, if H({) is MHSS in the ¢-domain, then the
bilinear transformed version H,(z) is approximately
MHSS in the w-domain in the region given by

ol <
implying
¢ = wiTi/ 27

; t=1ton.
This approximation, used in combination with other fre-
quency transformation techniques [9], [10] (cf. Section IV),
offers very good symmetry properties. This is sufficient for
most practical applications because the transition band,
where symmetry is usually critically important, is rarely
located near the Nyquist boundary .

In the 2-D and 3-D cases, MHSS is referred to as
magnitude circular symmetry and magnitude spherical
symmetry, respectively.

C. Design Implications

Investigations on the properties of polynomials (which
are simply special cases of transfer functions) having
magnitude quadrantal and octagonal as well as cubic
symmetry have been made in [11], [12], [15], where the
classes of such symmetric polynomials are identified. This
contribution establishes the necessary and sufficient con-
ditions on the coefficients of the MD numerator and
denominator polynomials having magnitude hyperspheri-
cal symmetry (MHSS). Indeed, we give these conditions in
an explicit form in Sections II and III and show that they
may be used to significantly simplify the filter design
problem; for example, by increasing the probability of
obtaining a nearly-optimal design during numerical opti-
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mization. A simplified formula for the magnitude hyper-
spherically symmetric polynomials is presented which can
simplify the analysis of the filter transfer function and
allow us to find an empirical design procedure, as shown
in Section IV.

The requirements of MHQS and MHOS are obviously
necessary conditions for MHSS transfer functions, and
according to Theorem 1, an MHSS transfer function must
then have a denominator polynomial that is separable in
all the frequency variables. Intuitively, one might expect
that it will be difficult to achieve an MHSS denominator
polynomial, that is known, together with the MHSS nu-
merator polynomial, as a sufficient condition for obtaining
MHSS transfer functions. A sufficient condition for such
W-domain denominator polynomials being MHSS is given
in [16], where the @-domain squared magnitude of the
denominator, say G(¢?) (¢? = (¢?, ¢2,+, $2)7), may be
chosen in the form

G(e?) = [1G,(e?), (4a)
i=1

where
Go(@?) = e, (4b)

We show in Section II that this is also a necessary condi-
tion, within a multiplicative constant. This new result is
very restrictive and has the consequence that the denomi-
nator polynomial of any exactly MHSS transfer function is of
infinite order and fully determined except for the o parameter
in (4b). From the point of view of the filter design, the
finite-order denominator polynomial must be determined
to approximate (4b) as close as possible, in order to obtain
a nearly-optimal solution. It has been shown [16], [17] that
finite-order MHSS filter transfer functions satisfying the
condition (4) can be obtained, which exhibit good selectiv-
ity and symmetry. In Section V, we show that the filter
degree can be significantly reduced by using only a 1-D
optimization procedure.

Although many symmetry considerations can be gener-
alized to the case of complex transfer functions [13], [18],
we focus here on real transfer functions.

II. NECESSARY AND SUFFICIENT CONDITIONS
ON THE DENOMINATOR g(i) oOF MD MAGNITUDE
HYPERSPHERICALLY SYMMETRIC TRANSFER
FuncTiONS

MD MHSS transfer functions are necessarily MHQS
and MHOS. Therefore, we first briefly discuss the neces-
sary and sufficient conditions on the denominator g(is) of
MD MHQS and MHOS transfer functions, in order to
derive the corresponding conditions on the denominator
8(¥) of MHSS transfer functions.

A. Magnitude Hyperquadrantal and Hyperoctagonal
Symmetry (MHQS, MHOS) of g(is)

It follows from Theorem 1 that it is necessary and
sufficient that the denominator g(ys) of an MHQS trans-
fer function is a product of n 1-D (strict) Hurwitz polyno-
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mials. Hereafter, we first extend Theorem 1 to MHOS
symmetry and show that a similar result holds for MHOS
symmetry. A similar extension is also made by Theorem 3
for MHSS symmetry in the next subsection.

Theorem 2: An n-D allpass-free and irreducible refer-
ence domain transfer function H({s), defined by (3), is
magnitude hyperoctagonally symmetric if and only if the
squared magnitudes of the numerator and denominator,
fGe)f(—je) and g(je)g(—je), are individually hyperoc-
tagonally symmetric.

The proof of Theorem 2 can be given in a similar way
as for Theorem 1 in [13]). However, the proof itself is
helpful for understanding the proofs of the following new
theorems. We therefore sketch the proof of Theorem 2
here.

The sufficiency of the condition in Theorem 2 is obvi-
ous. For proof of necessity, consider that the statement of
the theorem implies that

H(je)H(—j¢) = H(jQ@)H(—jQo), &)

where @ is an n X n integer matrix which is obtained by
reordering the row vectors of the unit matrix, causing a
reordering of the components ¢; (i =1 to n) of the
vector ¢ in an arbitrary way. By analytic continuation, the
statement (5) implies that

Ff(—4) _ FQUE) f(—Q)
g()g(—)  g(QU)g(—-0W)

holds. On the left-hand side of (6), a cancellation cannot
occur because H(is) is assumed to be irreducible and free
of allpasses. Therefore, it follows from (6) that

S F(=P) = KfF(Q) f(—0W), (7a)
g(W)g(—w) = Kg(Qd)g(—0w) (76)

hold, where K could first in principle be a polynomial.
This would imply that the numerator and denominator of
the left-hand side of (6) has a common factor, which
however has been excluded by the assumption. Hence, K
is a constant. In fact, it is easy to see, by setting all the y;,
i =1 to n, to be equal, that K = 1.

Note that, according to (2), the same statement also
holds for the z-domain transfer function, and that the
assumption of Theorem 2 can be extended by saying that
(7) holds for an arbitrary matrix Q.

- Applying Theorems 1 and 2, we state that the denomi-
nator g(is) of an n-D MHOS reference domain transfer
function must have the form

©)

g() = ’Y_l:I]go(l/’i)r (®)

where go(¢;) is a 1-D (strict) Hurwitz polynomial and ¥y is
a unimodular constant.
B. Magnitude Hyperspherical Symmetry (MHSS) of g(i)

Theorem 3: An n-D allpass-free and irreducible refer-
ence domain transfer function H({s), defined by (3), is
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magnitude hyperspherically symmetric if and only if the
squared magnitudes of the numerator and denominator,
fGe)f(—je) and g(je)g(—je), are individually hyper-
spherically symmetric.

The proof of this theorem follows the same strategy as
above. In particular, the sufficiency is obvious. For proof
of necessity, we consider that the statement of the theo-
rem amounts to saying that the squared magnitude re-
sponses along two arbitrary radial lines in the n-D refer-
ence domain are identical. This is equivalent to stating
that

H(jup)H(—jue) = H(ju,¢) H(—ju, ¢) )

holds, where u is an arbitrarily-chosen real unimodular
vector, i.e., the Euclidian norm |lull = 1, and where u, =
(1,0,--,0)". That is, the behavior of the squared magni-
tude response on an arbitrary radial line is the same as
that on the ¢, axis. By analytic continuation, the state-
ment (9) implies that

fluy)f(—uy) Sy f(—uyyp)
gup)g(—uy)  glug)g(—u,¢)

holds, where the argument uy can be simply considered
as written in the hyperpolar coordinate system. Because
the same cancellation discussion under Theorem 2 applies
here, it follows from (10) that

f) f(—up) = Kf(u, ) f(—u,p),
guy)g(~uy) = Kgu,p)g(—u, ).

As is shown above, the factor K = 1.

Note that the assumption of Theorem 3 can be ex-
tended by saying that (11) holds for an arbitrary vector u.
Although MHSS in the both ¢- and w-domains are not
exactly equivalent, Theorem 3 aiso holds for the z-domain
transfer function. The proof can follow the same way as
above, where the frequency variable o is transformed to
uow.

Because an n-D z-domain filter transfer function H,(z)
is a trigonometric function in the frequency variables w;
(i=1 to n), or more precisely, a rational function in
sin w; and cos e;, the condition (11) can not hold exactly.
However, a good approximation can usually be made in
the @-domain. Therefore, we consider hereafter the refer-
ence domain transfer function H(is), although both hy-
perspherical symmetries in the w- and ¢-domain are not
equivalent.

Theorem 4: The denominator polynomial g(ys) of an
n-D allpass-free and irreducible reference domain trans-
fer function H(), defined by (3), is magnitude hyper-
spherically symmetric if and only if it is given by (8)

(10)

(11a)
(11b)

g(Pp) = Y_I:Igo(‘/’i),

where g,(¢) (the frequency index is dropped for simplic-
ity) is a 1-D (strict) Hurwitz polynomial whose degree
tends to infinity, the squared magnitude gq(j@)g,(—je)

converges to e*** within a multiplicative constant, and a
is a constant.

Proof: The sufficiency of the assumption for the sym-
metric requirement is 0bv1ous Furthermore, if
80(j®)go(—jo) converges to e**’, which is greater than
zero for all real ¢, there exist no real roots of the real
even polynomial g,(j@)g,(—je) in the variable . Substi-
tuting je by ¢, we obtain the even polynomial
80(¥)go(—¢) in the variable ¢, that has then no roots on
the imaginary axis of . Further, a zero point ¢, of the
polynomial go()g,(—~ ) always implies a zero point — i,
of the same polynomial so that we can write this polyno-
mial as a product of a Hurwitz and an anti-Hurwitz
polynomial, say go(¢) and g,(—¢).

For proof of necessity, because MHSS transfer func-
tions are necessarily MHQS and MHOS, therefore, ac-
cording to Theorems 1 and 2 and (8), we only need show
that it is necessary that g¢(j@)g,(—j) is of infinite order
and converges to e*?". For simplicity, we define the
squared magnitude function

Golg?) = 8o(j®)go(—je)
and say that
Go((PZ) = e“"z

must hold. According to Theorem 3, (11b) must hold, that

means particularly for the 2-D case (n = 2) the following

equations must hold for MHSS:
Go(uie?)Go(u30%) = Go(9?)Gy(0),  (12a)

with

(12b)

We now establish the constraints that must therefore exist
on the coefficients of the polynomial G,(¢?). Let

u?+u?=1.

M
Go(0?) = Y a,- (o2, (13)
k=0

where M is the degree of the polynomial g{jp). Then, we
can express the right-hand side of (12a) as

G(e*)G(0) = (14a)

M k
Y a5, (¢7)
k=0
and the left-hand side of (12a) as
Go(u29?)Gy(u2 0?)

S
X

i+j
u1 uzl( 2)

-
I
[~

- LM

Mx IMx
Irﬁ
&

_jaudks i 2

o k
2k=j)y,25( 2
k—j4; U] Nyl (@*)

b
]
<
-
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< OMN
Q

ay_jaui*" DuZi(e) . (14b)

»Mk

+
EM
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By comparing the coefficients of (14a) and the first term
of (14b), we obtain the necessary condition for satisfying
(12a)

k

2 ay_jauithull.
j=0

aga, = (15)
This equation is a recursive formula. In order to obtain an
explicit formula, we consider the following cases:

1) Zero- and First-Order Case: It can be easily checked
that, for kK = 0,1 and a,, a; being arbitrary, (15) holds
automatically.

2) Second-Order Case: For k = 2, (15) can be written as
aga, = ayagui + aa,utul + aya,ul,

from which we have, under consideration of (12b),

for arbitrary a, and a,.
3) Arbitrary Order Case: For any nonnegative integer k,
we now show that it is necessary that

af

a, = ——F—.
T klab!

(16)

It is clear from above that for k = 0,1,2 (16) is neces-
sary. Assume that (16) is necessary for a particular k, then
we have a;, , determined by

k+1

_ Ak+1-j),,2j

Bglyy = 2 Gy —jaurt T ug,
j=0

which leads to

k
- k+1) _ 2(k+1)y 2k +1-j),, 2§
aga;.,(1 u]Z( ) —udkrh) = z ak+l—jaju]( Dy,
j=1
Using the binomial formula, we have

k1 (k+ 1)!
k+1
(w2 +u)' = 2k 2
P Eo(kﬂ—j)!"

k !
- JL*L,,IM i
j=1 (k+1=Y!
+ u]Z(k+1) + u%(lﬁ-l).
Considering the relation (12b), we obtain @, uniquely
determined by

Ak+1-j),2
Apy1-,;0;U5 Py

M

1

I

_ J
A1 = %

kT D an

(k+1—])"

Putting the assumption (16) for a,, ,_ _; and a;, respec-
tively, into (17) yields

a;c«#-l

Yt = et Diak’

so it is proved that (16) is necessary for the case of
arbitrary order k.

The second term of the right-hand side of (14b) is a
term whose degree is higher than the degree M of the
polynomial (14a). Thus, it is clearly the higher-order error
term. This error term converges to zero as the degree M
tends to infinity. Indeed, we have for M — « in (14b)

P k
Go(uie?)G(uj0*) ak—jaju%(k Duy(¢?)

i
it
s

k

0
-

J

N o k
2(k—j)y,2) 2
ay_aui*uz(o?)",

1]
18
M»

k 0

()

and the error term is zero.
By using (16), the function G(¢?) may be written in
the form

M {‘ K
Gg(‘PZ) Z k ) s
= a
and for the case M — =
k
a,
2 aO ap? a,
Gle®)=ay ) ———— =gpe*® and a=—,
k= k! %

which reveals the necessary and sufficient condition on
MHSS denominator polynomials. Q.E.D.

Theorem 4 implies that the squared magnitudes of the
¢-domain exactly MHSS denominator polynomials are
separable in their individual frequency variables and each
1-D factor is of 1nﬁn1te order, converging to the exponen-
tial function aoe““’ That is, except for a scaling constant,
the ideal denominator polynomial is fully determined by
only one parameter, namely,

ITI. NECESSARY AND SUFFICIENT CONDITIONS
ON THE NUMERATOR f(i) OF MD MAGNITUDE
HYPERSPHERICALLY SYMMETRIC TRANSFER
FuncTioNs

The numerator polynomials f({s) of the MD MHSS
transfer functions do not have to be separable in their
frequency variables. Therefore, we expect somewhat less
restrictive conditions. However, according to Theorem 3,
the numerator f(ds) must be MHSS.

Theorem 5: An n-D reference domain polynomial f(ys)
is magnitude hyperspherically symmetric if and only if it is
polynomial hyperspherically symmetric.

Proof: The sufficiency is obvious. For proof of neces-
sity, consider that the statement of the theorem amounts
to saying that, by analytic continuation,

Fa)f(—uy) = flu, ) f(—u ) (18)
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holds, where u and u, are defined as in Theorem 3.
Equation (18) says that each factor of f(uy) must be a
factor either of f(u;¢) or of f(—u,y). Consequently,
every factor of f(uy) and thus f(uy) itself has to be
independent of any particular choices of u, which leads to

fluy) =f("11/1)

or equivalently that f(uy) is polynomial hyperspherically
symmetric (PHSS). Q.E.D.

Note that we can also conclude f(uy) = f(—u, ) from
(18), which means that an n-D reference domain PHSS
polynomial is an even function in each reference fre-
quency variable and fully determined by its behavior on
one frequency axis. Moreover, the general form of refer-
ence domain MHSS polynomials is a reference domain
PHSS polynomial given as f (Z7_,4;%). That is, all the
polynomials of this kind can be obtained by using fre-
quency transformation techniques.

Theorems 4 and 5 impose strict conditions on the form
of MHSS filter transfer functions. However, good symmet-
ric filters can nevertheless be designed, as shown in the
next section and in [16], [17].

IV. AN EMPIRICAL ALGORITHMIC DESIGN
PROCEDURE FOR MD MAGNITUDE
HYPERSPHERICALLY SYMMETRICAL
Low-PAss FILTERs

According to Theorems 4 and 5, the general n-D
squared magnitude response of MHSS filter transfer func-
tions is uniquely determined by its behavior on one fre-
quency axis, which can be given as

Fo(‘Pz)
Gole?)’

In order to obtain a nearly-optimal design, the denomina-
tor Gy(¢?*) must be chosen to approximate the exponen-
tial function e**’. As a very simple possibility, we set it to
be a finite Taylor series of the exponential function [16]:

M (ap?)*
Go(¢") = E, y(¢P) = ¥ a:- ,
k=0 K:

M (@) = Hy(jo)Hy(—jp) =

where M is the degree of the corresponding denominator
polynomial of the transfer function in one frequency
direction and « is a free parameter. The numerator
Fy(¢?) must be a squared form of an even polynomial in
@, that can be determined in the same way as shown in
{16, [17). However, combining the methods of {16], [17]
can give a design approach which, on the one hand,
involves very few free parameters so that heuristic design
methods can be used successfully and, on the other hand,
guarantees a short transition band. In this sense, we
choose the numerator

N
Fi(e?) = B2 (oD TT( - 0%/63),

where L is an integer, denoting the degree of the Taylor
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series approximating the exponential function e(*/?¢* in
the numerator, and ¢, (i = 1 to N) determine N posi-
tive zero points of the magnitude response. For low-pass
filters, L should be in the interval 0 <L < M — N in
order to ensure sufficient stop-band loss.

If @, is appropriately located, the (squared) magnitude
response Mg () approximates 1 in the low frequency
region or pass band, because the zero-point factors ap-
proach 1 and the squared Taylor series E> 2,1(¢?) in the
numerator approximates the same exponential function
e“?" as closely as does the Taylor series E, ,,(¢?) in the
denominator. For higher frequencies, E, ) becomes in-
creasingly greater than E? ,2,L» the magnitude response
begins to enter the stop band. In order to force the
(squared) magnitude response MZ(¢) to reach the stop
band faster, the numerator is assigned to have zero points
created by the factors (1 — ¢2/¢3,)?. In this way, a desir-
able stop-band loss can be achieved without choosing a
large degree difference of M and L, which amounts to a
reduction of filter degree. The parameters to be deter-
mined for a given filter specification are M, L, «, and ©oi-
Hereafter, we give a heuristic procedure for determining
these parameters. For simplicity, we discuss only the case
where there is only one zero point, because the case of
one zero point may satisfy most practical requirements
and the more general case can be considered in a similar
way. Indeed, an additional zero point can always be added
at the relative maximum point in the stop band.

A. 1-D Design Procedure

Let a low-pass filter specification be given as: The
minimum value of the squared magnitude response M ()
in the pass-band is A,, the pass-band edge is Q,; the
maximum value of M () in the stop-band is A,, the
stop-band edge is Q,. The design procedure can be di-
vided into the following steps:

Step I1: Estimate the degree M and set the degree L to
be the greatest integer smaller than 1M — 1, then go to
Step 2.

According to the special choice of the numerator
Fy(¢?), the degree M should be chosen with respect to
the prescribed pass-band radian . The necessary degree
M for a particular pass-band radian can, for example, be
examined by statistical methods. The parameter L can
certainly affect the pass-band radian, too. However, we set
it to depend on M in order to get a lower overall filter
degree. Certainly, the heuristically chosen degree M can
be optimized, step by step. Usually, the value of M is
smaller than 30.

Step 2: Estimate a, then go to Step 3.

The value of « is essentially determined by the width of
the transition band Q, — , and the prescribed maxi-
mum response A, in the stop band. Initial values between
20 and 30 can always offer quite satisfactory results.

Step 3: Estimate ¢,, then go to Step 4.

The zero point is properly set to be located in the near
from the stop-band edge so that the stop-band maximum
response A, cannot be exceeded.
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Step 4: Determine the increase of a for the numerator,
then, if necessary, go to a step above.

The « value in the numerator factor E? /2. 1{¢?) should
be finally a little greater than that in the denominator
E, w(¢?) in order to take into account the influence of
the zero-point factor in the numerator within the pass
band, guaranteeing the minimum response A, in the
whole pass band. We indicate this difference in the Taylor
series of the numerator and denominator by using «’ for
the numerator factor E,. , ,, instead of a.

B. MD Frequency Transformation

The above design procedure has been effectively imple-
mented, using the Mathematica 2.0 software package. Our
experience shows that the squared magnitude response
M; (o) is not very sensitive with respect to the parameters
M, L, o, and ¢, so that this empirical procedure gives a
fast design method leading to desired results.

After the parameters M, L, «, and ¢, are obtained, a
frequency transformation

(19)

where ¢? = (@7, ¢2,-, 92)7, is applied to the numerator
Fy(¢?). The resultant transfer function is then given by

Ea'/2’L(T(_‘!‘2))n,"Y—‘1(l - T(_‘-bz)/(Pg,)
7 go(y) '

where $2 = (7, ¥Z,--+, 42" and go(¥) is a 1-D (strict)
Hurwitz polynomial obtained in the way described in
Theorem 4.

To achieve MHSS in the reference frequency domain
¢, which approximates the same symmetry in the fre-
quency domain , the frequency transformation (19) must
be chosen as

o> = 1(¢?),

H(¥) =

(20a)

For better symmetry in the frequency domain w, other
frequency transformations have been proposed. An often
used transformation is the so-called McClellan transfor-
mation [9], [10]

A+ =110+ ¢D),
i=1

(20b)

which gives a better MHSS in the w-domain. Also, a
generalized McClellan transformation has been proposed

(10]
1+ Be?) =114 + Be?), (20c)
i=1
where B is a real parameter. Using an appropriate S,
improved w-domain MHSS in the region somewhat far
from the origin can be achieved.
The factor E,. ,, ,(¢*) of the numerator of the transfer

function before frequency transformation can be factor-
ized in first- and second-order factors in ¢?. In order to
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obtain better MHSS in certain region of the w-domain,
the generalized McClellan transformation (20c) can be
applied to each factor of E,. , {9?), where different
values B may be chosen for distinct factors [19], and the
optimum value of each B can be obtained by using an
optimization procedure.

C. Reduction of Filter Degree

The approximation method chosen for the empirical
design is a maximal flat approach that provides a satisfac-
tory result only for an appropriate high-degree of the
transfer function. In order to reduce the degree of the
filter, the general form of the numerator Fy(¢?) and the
denominator G,(¢?) as well should be employed, where
1-D optimization procedures are used for determining the
coefficients of the general form numerator and denomina-
tor polynomials. The approximation approach can follow
the following steps:

Step I: Let the polynomials E,. , ;(¢*) in the numera-
tor be replaced by an even polynomial of the general form
and determine its coefficients and the parameters ¢,; and
a of the other terms in the numerator and denominator
by using a 1-D optimization program, where the coeffi-
cient values given by the empirical design are used as the
initial values of optimization. The optimization reference
is the given radial filter specifications.

Step 2: Let the denominator E, ,(¢?) be replaced by
an even polynomial of the general form and determine
the coefficients of the new denominator G,(?) by using
a 1-D optimization program, where the « value given by
Step 1 is used to build the initial coefficient values of
optimization. The optimization reference is the exponen-
tial function e*/%* in the w-domain, where the « is
given by Step 1.

Step 3: The general form numerator and denominator
from Steps 1 and 2 build the final radial squared magni-
tude response MZ(@). The numerator Fy(¢?) of this
M{(p) is further optimized by using a 1-D optimization
program, where the corresponding coefficient values from
Step 1 are used as initial values of optimization. The
optimization reference is the given radial filter specifica-
tions.

Step 1 of the above approach serves to find a better set
of initial coefficients of the numerator for the optimiza-
tion in Step 3 as well as to find the optimal value for a of
the maximal flat form denominator, whereas Step 2 deter-
mines the optimal coefficients of the general form denom-
inator, that is, Step 2 is a denominator only optimization.
In particular, the MHSS symmetry of the denominator in
the critical frequency region can be guaranteed by the
Step 2 optimization. In Step 3, the numerator coefficients
are adjusted to the general form denominator. The im-
provement achieved by this optimization approach is illus-
trated by examples in the next section.

V. DEsIGN EXAMPLES

For the first two of the following low-pass filter exam-
ples, the above empirical design procedure is applied,
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where the constants T; in the definition of the variables z,
(i = 1 to n) (cf. (1)) are normalized to be 1. For simplicity
the frequency transformation (20a) is utilized for Exam-
ples 1 and 3. In Example 2, the transformation (20a) is
also applied to the term E,. , ;, whereas a more general
transformation based on (20c¢) is used for the zero factor
term (1 — ¢%/¢3), in order to improve the symmetry in
the transition band. The squared magnitude responses
have then the form

MZ (@) = M*(@)lg,-tan(w,/2),i=1t0n

3
Ec%'/Z,L( Z ¢i2

i=1

3
(1 - ( Y oF + Bloie?

i=1
2
+ 0303 + 030?))/0})

3
nEa,M(¢i2)

i=1

In all the examples, very good magnitude hyperspherical
symmetry has been achieved with moderate filter degree.

Example 1: A 3-D low degree, say fifth degree in each
frequency variable, magnitude spherically symmetric low-
pass filter is designed to meet the specification: 4, = 0.99
at the edge frequency Q, = 0.2, and A4, = 0.001 at the
edge frequency (), = 0.875. The obtained parameters are
M=5L=1a=355 a' =475 and Q, = 0.92 (¢, =
tan (Q,/2)). In the frequency transformation of the nu-
merator, the term with the factor 8 is omitted according
to what is said above. The contour diagram and perspec-
tive view for the cross section @, = 0 and a 3-D surface
plot of the corresponding squared magnitude response
M?(w) is shown in Fig. 1.

Example 2: A 3-D wide-band magnitude spherically
symmetric low-pass filter is designed to meet the specifi-
cation: 4; = 0.995 at the edge frequency O, = 0.85, and
A, = 0.001 at the edge frequency 2, = 1.635. The ob-
tained parameters are M =20, L =8, « =285, a’' =
302, and €, = 1.33 (¢, = tan(£2,/2)). In the frequency
transformation of the numerator, the factor B is chosen
to 1.33. The contour diagram and perspective view for the
cross section w; = 0 and a 3-D surface plot of the corre-
sponding squared magnitude response M?(w) is shown in
Fig. 2.

Example 3: A 2-D magnitude circularly symmetric low-
pass filter having the same radial magnitude specifications
as in Example 2 is designed to demonstrate the degree
reduction technique, where only the first step of the
optimization approach has been done, because for this
particular example this step brings out the most improve-
ment. The radial squared magnitude response MZ(¢) is
chosen as

L 2
Fy(o?) (1 + Zbi‘PZi) (1 - ¢2/¢2)

_ i=1
G(o?) E, y(¢?)

Mi(p) =

w2
1.5

©

Fig. 1. Squared magnitude response (SMR) in Example 1. (a) Contour
diagram (cross section w; = 0). (b) Perspective view (cross section
w5 = 0). (¢) Surface plot (SMR = 0.9; 0.5; 0.1).
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w2

1.5 Wy

©

Fig. 2. Squared magnitude response (SMR) in Example 2. (a) Contour
diagram (cross section w; = 0). (b) Perspective view (cross section
w; = 0). (c) Surface plot (SMR = 0.9; 0.5; 0.1).

Fig. 3. Squared magnitude response (SMR) in Example 3. (a) Contour
diagram. (b) Perspective view.

The obtained filter coefficients are listed in Table 1. The
perspective view and contour diagram are shown in Fig. 3.
Although the filter degree M is only 9, the same filter
specification of Example 2 has been achieved.

Example 4: A 2-D narrow-band magnitude circularly
symmetric digital filter is designed for generating fractal
images [20]. For such a filter, the radial magnitude re-
sponse should run off linearly against the logarithm of
frequency. Correspondingly, the numerator of the squared
magnitude response is chosen to be a general even func-
tion as the product of first- and second-order factors

L
Folo?) = TTU + b0 + ¢,0*),

i=1

while the denominator is still chosen as the Taylor series
E, 4(¢?). The parameters of this design example have
been obtained by using an optimization procedure and are
listed in Table II. The perspective view and contour
diagram as well as the radial squared magnitude response
M} (w) in the logarithmic measure are shown in Fig. 4.
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Fig. 4. Squared magnitude response (SMR) in Example 4. (a) Cross section w, = 0. (b) Cress section w; = w,. (c) Contour

diagram. (d) Perspective view.

TABLE 1
FILTER PARAMETERS OF EXAMPLE 3
M=9 L=3 a = 17.3707
b, =9.94327 b, = 21.3255 b, = 329.184
®o = 1.25748
TABLE II
FILTER PARAMETERS OF EXAMPLE 4
M=16 N=3 a =28
b, = =55 b,=-23 by = —0.01
¢, = 22.6875 c, = 19176 c3=55-10"°%

— —

Example 5: A 2-D narrow-band magnitude circularly
symmetric low-pass digital filter has been designed, where
both numerator and denominator are separable and cho-
sen as Taylor series. Thus, this is a cascaded version of
two 1-D filters. The order of the numerator and denomi-
nator Taylor series are M, = 10 and M, = 16 and the
a-parameter of the numerator and denominator Taylor
series are a; = —20 and a, = 28. The perspective view
and contour diagram as well as the radial squared magni-
tude response in the logarithmic measure are drawn in
Fig. 5, which show that even such a separable solution
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Squared magnitude response (SMR) in Example 5. (a) Cross section w, = 0. (b) Cross section w; = w,. (c) Contour

diagram. (d) Perspective view.

possesses good circular symmetry in the region near the
origin.

VI. CONCLUSIONS AND REMARKS

The major concern of this paper is the necessary and
sufficient condition for magnitude hyperspherically sym-
metrical (MHSS) filter transfer functions. This condition
is derived for both the numerator and denominator of the
reference domain filter transfer function. It leads to the
reference domain result that the squared magnitude of
the denominator polynomial must be a product of 1-D

polynomials approximating the squared exponential func-
tion and the numerator polynomial itself must be a 1-D
radial even function. Therefore, the approximation proce-
dure involved for the design of MHSS filters is essentially
a 1-D procedure, and thus relatively easy to implement.
The constraints imposed on the filter design are quite
strict, but low-degree filters can nevertheless be designed.

It has been shown that there exist no exact MHSS filter
transfer functions in the w-domain. Approximations of
such symmetry in the w-domain can be achieved by using
different ¢-domain frequency transformations. Also dis-
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tinct frequency transformations can be utilized for a sin-
gle transfer function. The parameters obtained by using
the proposed 1-D design approach for MHSS filters can
be further used as a set of very good initial values for
subsequent additional MD numerical optimization proce-
dures. However, such an MD procedure is usually not
necessary because of the good results of the 1-D design
approach.

It has been shown by Example 5 in Section V that for
narrow-band filters, transfer functions having both separa-
ble numerator and separable denominator can be de-
signed to possess certain MHSS symmetry in the near
from the origin. Such a separable design may be sufficient
for certain applications. If stricter symmetry is needed in
some region far from the origin, the general form numer-
ator and denominator should be employed (cf. Example
4).

It is observed that, if the numerator E2. , (oI, (1
- ¢*/¢p)? is replaced by E,. (DTN (1 — ¢2/02),
the same squared magnitude response MZ(¢) can be
achieved. The degree required in this way would be much
lower than before. However, one cannot find an MD
polynomial whose squared magnitude response meets the
frequency transformed MHSS version of this low-degree
numerator E,. ,(r(@*)I1 (1 — 7(¢?)/¢?). Indeed,
Theorem 5 excludes such possibilities.

The reduction of the filter degree can be achieved by
using the general form numerator Fy(¢?) as in Examples
3 and 4, instead of the maximal flat approximation for the
numerator. The examples have shown that the improve-
ment is significant. Further, the degree of the MHSS
symmetry of the magnitude response can be improved if a
general form denominator that approximates the w-
domain squared exponential function is employed. It is
also worth mentioning that all these improvement meth-
ods need only 1-D approximations.

Comparing our results with prior results in the litera-
ture, we find that most previously designed MHSS filters
are nonrecursive and are easier to design. Among the
remaining recursive filters, most of them are semicausal
and require reversal of the recursion directions for imple-
mentation. Some published good design examples of causal
recursive MHSS filters exist but do not provide the filter
coefficients (cf. [4]). Comparison of our results with the
available causal recursive filters shows that the proposed
method guarantees a better MHSS symmetry even for
high-selective wide-band filters, that is very difficult for
other direct optimization methods (cf. [1]-[3], [5]. The
achievable filter degree in this paper is much lower than
that of the related methods (cf. [16], [17]).

For high performance implementations of the obtained
MHSS: transfer functions, several decomposition tech-
niques can be utilized. In particular, the filter can be
implemented by using only 1-D second-order sections [17].
Also, the phase equalization problem of this filter is easy
to solve [17], because the numerator of the transfer func-
tion is an even polynomial and the denominator is a
product of 1-D polynomials.

i
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