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Simulation of Fractal Multidimensional Images
Using Multidimensional Recursive Filters

L. T. Bruton and N. R. Bartley

Abstract—Fractal multidimensional (MD) images may be gen-
erated by simulating MD fractal Brownian motion (fBm). This
is usually achieved by appropriately weighting the magnitudes
of the Fourier coefficients of the MD discrete Fourier transform
(DFT) of the required fractal image. In this contribution, it is
proposed that MD hyperspherically-symmetric recursive filters
be used to approximate fractal images directly in the spatial
domain, thereby allowing spatially-variant characteristics to be
obtained without the undesirable edge effects of the MD DFT
method. The method is used to generate realistic 2D fractal
landscape images having spatially-variant characteristics.

1. INTRODUCTION

ANDELBROT’S FRACTAL GEOMETRY (1] has

found a wide variety of applications. The statistical
self-similarity of fractal shapes is inherent in the natural
world and may be exploited to simulate natural processes.
In [2], Voss describes the self-similarity of fractal landscapes
and distinguishes between deterministic fractals, such as the
von Koch snowflakes, and random fractals. In particular,
random fractional Brownian motion (fBm) corresponds to
fractal landscapes and occurs widely in nature, accurately
describing such phenomena as pitch variation in music, flicker
noise in solid-state devices, 2D mountain landscapes and 3D
spatio-temporal image sequences of moving formations of
clouds [2].

The analysis and synthesis of 1D fBm has been of growing
interest recently, and recent publications have appeared [3],
[4] that explore fBm using wavelet-based techniques. In this
contribution, it is shown that multidimensional (MD) fBm
may be simulated in the spatial domain by applying MD
noise, having a known MD spectral density function, to a MD
hyperspherically-symmetric recursive digital filter.

Following [2], a MD continuous-domain signal z(t), t €
RM | possesses fBm if, throughout its domain, the MD dif-
ference A(ty,tz) = z(t1) — z(t2) satisfies the following
stochastic properties; for any t; and t3,t; # to, in the domain
of z(t),

1) A(ty,tz) is a zero-mean function having a Gaussian

amplitude probability density function and,
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2) the variance o(ty,t2) of A(ty, tp) is given, for some
constant K, by

o(t1,t2) = K[[|A(t, t2)ll2)"  H, K, € R M

where [|A(t1,t2)||2 is the MD Euclidean norm. The
scaling parameter H controls the relative “roughness”
(or “smoothness”) of the continuous-domain MD fractal
surface z(t).
The concept of fractal dimension D is often used [2] to
characterize fractal surfaces, where ’

D=M+1-H 2

and where M is the dimensionality of z(t). Generally, the
fractal dimension D is in the range M < D < M+ 1,
corresponding to 0 < H < 1.0. For example, in the 2D case
(M = 2), it has been found that H = 0.8 corresponds to
excellent 2D surface simulations of mountainous landscapes.
The fractal dimension of the landscape is then given by
D=2+1-08 =22

Let X(jw), w € RM, be the MD Fourier transform of
z(t) so that ®(w) = X (jw)X(—jw) = | X (jw)|? is the real
continuous-domain MD spectral density function of z(t). Itis
well known that [2], [6] this MD fBm has the spectral density
function

P

(W) = — >t
) [llw!lz)** "

&, constant € R

SPECTRAL DENSITY
FUNCTION OF MD fBm 3)

where ||w||2 is the Euclidean norm of the MD vector w; that
is, ||w||2 is the Pythagorean distance of w from the origin in
RM . The parameter 3, where

B=2H+1 @)
is referred to as the spectral exponent of the fBm, so that

&(w) = Pollwll”?, ®0,8 € R. 5)

Typically, for the case of a 2D landscape, one might choose
H = 0.8, implying ®(w) = Boffjwllz) > and |X (w)| = 25/
(lwl]2] ™.
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II. REVIEW OF THE SIMULATION OF MD
fBm USING DIRECT SPECTRAL SYNTHESIS
AND THE DISCRETE FOURIER TRANSFORM

We are concerned with a discrete-domain sampled version
of z(t), which we write as z(n), n € ZM, where the values
of z(n) are quantized in machine-representable form. Clearly,
z(n) can only be a discrete-domain quantized-amplitude ap-
proximation of a continuous-domain signal z(t); this follows
because the statistical distributions of A(n;,n;) = z(n;) —
z(ngz) are not defined for non-integer values of n; and ny
and one cannot consider a corresponding image surface to
have any meaning at spatial resolutions near or below one
sample distance. However, at much larger MD spatial distances
where ||n; — ng|l; > 1, the continuous surface (obtained by
connecting rectangularly adjacent samples of z(n) with planar
surfaces) turns out to provide an excellent approximation to
the continuous-domain fBm function z(t). This is achieved
by ensuring that the discrete-domain spectral density function
®(N), Q2 € ZM, approximates (3) over an appropriate region
of support. The DFT has been widely used for this purpose
[2], [6]. We write the DFT of z(n) as X (2) and assume MD
regions of support for z(n) and X () given by

ZM = {n| - M;/2 < n; < (M; — 1)/2,Vn,,i = 1..M} (6)

A. Direct Spectral Synthesis
Discrete-domain MD fBm signals are obtained by choosing
the discrete-domain MD complex coefficients X (2), such that

E(|X(@)]] = Qe zM )

_B v
[192112)”
where E denotes expected value, and such that argX(2)
is randomly chosen with uniform probability in the interval
[0 27] [6]. The inherent conjugate symmetries of X () in ZM
require that | X (2)| be computed over only 1/2M of the dis-
crete points in ZM. At the M-tuple Q = {Q;,Q3,...,0},
the magnitude of the corresponding coefficient | X ()| is given
by [6]

jGauss|
XQ)|=-—=
@) [lie2]2)°

where Gauss is a procedure call that generates real numbers
(each time the procedure is called) having zero mean and unity
variance. For the 2D case, the corresponding inverse 2D DFT,
z(n1,n2) = DFT71[X ()], has been shown to approximate
excellent natural-looking surface landscapes and is the basis
for the computer-based simulation of fractal-based scenes.

The above direct spectral synthesis method does have cer-
tain practical limitations. Obviously, to achieve the required
spectral distribution, it is necessary to choose a sufficiently
large region of support ZM; typically, the image size M;
in the ¢th dimension must exceed 512 sample points, for all
dimensions ¢ = 1,2,..., M. In the 2D case, this corresponds
to 5122 = 262,144 data points per block of z(n;,n3) and
a 2D fractal surface that can, at most, possess self-similarity
over a magnification (zoom) factor of about 100, at which
point the resolution is so coarse that ‘surface’ features are not
visually interpreted by the human vision system.

®

64 128

Fig. 1. Fractal image produced by the 2D DFT method using four blocks,
M, = M; = 64.

The DFT synthesis method has additional limitations. The
number of real multiplications N'*T) and real additions
N S;I';T), assuming a fast Fourier transform (FFT) implemen-

tation of the DFT is given, for the 2D case, by

NEFD — 3M; M, logy (My M)
N(FFT) = 2M1M2 10g2(M1M2).

mult

&)

This often imposes a practical limit on the maximum block size
that can be processed by the FFT in an acceptable period of
time. The coverage of very large images z(n), say M; > 10%,
is often only practical if z(n) is broken into smaller rectangles
and by applying the FFT to each rectangular block. However,
block processing causes intolerable edge effects, as shown in
Fig. 1 for the 2D case, where M; = 64 and M, = 64 in each
of the four rectangular blocks.

A final disadvantage of the DFT approach is that it is not
possible to spatially-vary the statistics of the fractal image
within each data block. The spectral exponent 3, and therefore
the overall appearance of the surface features, are necessarily
constant (independent of n) in each block of Fig. 1. It would be
very useful, from a practical point of view, if the “roughness”
of the fractal surface could be arbitrarily varied throughout the
image z(n) by choosing 3(n) to be a function of n. In this
way, mountains could merge gradually into smooth valleys,
for example, without the requirement for postprocessing of
the fractal image [2]. It might also be desirable to spatially-
vary the exponent 3 as a function of angular orientation so
that surfaces are “rougher” in some directions than in other
directions, thereby attributing direction-oriented texture and
roughness to a surface.
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IIl. APPROXIMATION OF MD fBm USING
RECURSIVE MD FILTERS EXCITED BY MD NOISE

Assume a continuous-domain MD noise source z(t) having
a Gaussian amplitude probability function, zero mean and
unity variance. Let the MD Fourier transform of z(t) be
X (jw) and assume that the corresponding MD spectral density
function ®(w) is known and note that w € R.

In practice, we require a discrete-domain version z(n) of
this noise process having region of support ZM, for which
the corresponding continuous-domain spectral density function
@, (w) = X(jw)X(—jw) is also defined on RM, but has
periodicity 27 in each frequency variable w;. We define the
hyperrectangular region RM of RM as

RM ={w € RM|-7m <wiws,...,upm <7} (10)

and we propose to approximate the spectral density function
®(w) of (3) over this region. Consider a prototype discrete-
domain MD noise signal z(n) ideally having the continuous-
domain MD spectral density function ®,(w) = ®,o(||wl|2) ™%,
w € RM. Let z(n) be applied to a MD digital filter having
a unit impulse response h(n) and a MD hyperspherically-
symmetric continuous-domain energy density spectrum &5 ()
given by

r(w) = H(jw)H(—jw) = rolllwll2) ™, w € R}
an
where H(jw) is the Fourier transform F[h(n)] and the mag-
nitude response M (w) is given by

M(w) = [H(jw)| = @7 [|lw|l2) /2, w € RM. (12)

Writing
B=a+ B, (13)

it follows that the MD output signal y(n) = (z(n) * h(n)) has
a corresponding continuous-domain spectral density function
®,(w) given by

By (w) = o(w)Pn(w) = Byolllwlle] P,w € R¥ (14)

where @, is defined as ®,0®Pxo. Equation (14) corresponds
to one MD period of ®,(w) in RM and is the required spectral
density function of the discrete-domain simulated fBm signal
y(n).

It is interesting to note that MD recursive filters are well
suited to simulate MD fBm in this way. In general, 1/ f-type
noise is characterized as having long-range dependency, or
“memory”, where current values of a process are influenced
by its entire history, most strongly by recent events and
by decaying amounts for increasingly distant events [5]. We
employ MD recursive filters to model this notion of memory
via the convolution operation y(n) = z(n) * h(n). It is
important to recognize that the impulse responses h(n) of
these filters are exponential in nature and can only approximate
the power-law decay of the fBm.

In the remainder of this contribution, we describe a 2D
application of this principle using ‘white’ 2D noise (a = 0)
as the input signal z(ni,n2) to a 2D recursive digital filter
h(n1,no) that is designed to have an approximately circularly-
symmetric magnitude frequency response function M(w1,w2).

IV. GENERATION OF 2D FRACTAL LANDSCAPE
APPROXIMATIONS USING RECURSIVE DIGITAL FILTERS

Choosing the spectral exponent a of the 2D noise sam-
ples z(n1,n2) as zero corresponds to an easily-implemented
spectrally-flat noise source. We must then implement a 2D
recursive filter such that its continuous-domain circularly-
symmetric magnitude frequency response is given by

M (w1, ws) ~ 32 (w? + wl)~P/2 (15)

where <I>,ll{)2 is an arbitrary constant and 3 is the required
spectral exponent of the output fBm approximant y(nq,ns).
The frequency domain (wi,ws) is continuous on R? and
M (w,ws) is rectangularly-periodic at integer multiples of 27
along w; and wy. Consequently, we shall approximate M (w)
in (12) over the region of w given by

R2 = {wi,ws € R -7 < wiz <7} (16)
where unit spatial sample distances are assumed; that is,
ni2 € Z.

Although there is a significant body of literature relating to
2D circularly-symmetric frequency responses [7], the design
of 2D filters according to (12) is non-trivial. Given the 2D
discrete transform transfer function H (21, z2) = Z[h(n1,n2)]
in the matrix form

1271272 27 KA
H(Zl,Z2)=[ 1_1 1_2 1—K1][ ]
(L2127~ 27 t][B]

[Lzgt25® -2y X7

123725223 ]T “
we require a stable implementation having acceptably low
orders K, and K, and a magnitude response M(w1,ws) =
|H (e?1,e72)| that approximates M (w) of (12) in R2.

Domain of the Approximation It is most important that
M (w1, w2) be approximated in a satisfactory way in the region
R2. Near the origin of R2, say where ||wl||z < 7/10, it is
particularly important that the approximation be valid because
this region of the w domain corresponds to the surface features
that are readily detectable by the human vision system as
landscape features. If the image y(n1,n2) has support Z2 =
{ni,n2| — M;/2 < n; < M;/2,Vn;,i = 1,2}, then there is
no reason to maintain the fBm approximation at frequencies
closer to the origin than about |jw||z < 7/M; because the
corresponding spatial-domain features have spatial-constants
that exceed the size M; X M» of the image and cannot
be viewed. The accuracy of the fBm approximation is also
non-critical in regions well-removed from the origin, where
[lw|]lz > m/4, because such spectral components do not
contribute significantly to overall perceived shape but, rather,
to the fine texture of the perceived surface.

A. Approximation of fBm Using a 2D Recursive
Digital Filter Employing Rotated 1D Filters

Consider the radial line L; in R2, at an angle §; as shown
in Fig. 2. We shall design a rotated 1D recursive digital filter
H;(z1, z2) having a 2D magnitude frequency response given
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A

-R

-x

Fig. 2. Radial line about which M;(~,;) is defined.

by some appropriate function M;(-y;) where

(18)

¥i = wi cos b; + woy sin b;

In directions parallel to L;, the gain M;(vy;) is therefore
constant, as indicated by the gain contours shown in Fig. 2.
Consider now the set of N radial lines L; shown in Fig. 3,
corresponding to equi-spaced radial lines in R2 given by
™ e

19

and the corresponding rotated-1D filters H;(z1,22) having
the gain functions M;(~;). The serial connection of such N
rotated-1D filters has the transform transfer function

N
H(z1,2) = [ Hi(21,22) (20)
i=1
and frequency response
N
M(wi,wz) = ] Mi(w) @1
i=1

Clearly, M(w;,w2) has 2N-side polygonal symmetry about
the origin and not the circular symmetry that we are seeking.
Further, we have so far not determined how to select the
function M;. It is shown in Appendix A that, with
1

Mi(vi) = —, 22)
substituting (22) into (21) gives the 2D magnitude frequency
response

N-1 1
M(wy,w2) = —_—
i) = 1T qomsmas
ki

N-1 L

= (sinég) ™" Y
Il 1 o
k#i k#i

2D FREQUENCY RESPONSE OF N

ROTATED 1D FILTERS ALONG L; 23)

Ly Ly )™ Ly Ly

Lienr1

o

Fig. 3. N rotated functions ‘H, (€71, er*2))].

(b)

Fig. 4.
normalized to 7, (a) —7 < wi.we < 7.

Ideal M(w,w2) from (14) with 3 = 3 shown on frequency axes
b) —1r <wjwz < .17

where the angle 6 is shown in Fig. 3 and is given, for any
line L;, : = 0,1,2,...,N, by
n wk

Sh=-——=+ 2 k=0,1,..

LN -1
2 N '

(24)
The magnitude response in (23) exactly matches the required
circularly-symmetric magnitude response along all N radial
lines L; if we choose the spectral exponent A as

B8 SPECTRAL EXPONENT OF 1D

A= 2(N —1) FILTER PRIOR TO ROTATION

(26)

B. 2D Numerical Example, N = 6, 3 = 3

We want to simulate 2D fBm in an image y(n, n) having
size (M3, My) = (512,512) and having a fractal dimension
D = 2; that is, according to (2) and (4), 8 = 3. Then,
from (12), the required magnitude frequency response of the
2D filter, when driven by 2D white noise, has the form
M(wy,ws) = Q(l,/z(w% +w3)~3/2, which is shown on a linear
vertical axis in Figs. 4(a) and 4(b). The most important region
of R2, —w/10 < w1, w» < 7/10, is shown in Fig. 4(b).
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(b)

M (wy,wy) approximated via (21) shown on frequency axes normal-

Fig. 5.

izedtom, (@) -7 <wjwz <7, (b)) —.1l7n <wjwy < .17

Consider the choice N = 6, corresponding to the six lines
Ly,Ls,...,Le in angular increments of w/6, according to
(19). From (26), we choose A = 0.3 and use (18)-(22) to ob-
tain the approximation of M (w;,ws) shown in Figs. 5(a) and
5(b) which closely approximates the required M (wq,ws) =
@3/2(wf + w$)~3/2 shown in Figs. 4(a) and 4(b). It is con-
cluded that we may use these six rotated 1D filters to imple-
ment the required 2D filter.

V. 2D FILTER IMPLEMENTATION USING SIX ROTATED
1D FILTERS AND A SUB-SAMPLING SCHEME
Consider the six lines Ly, Lo, ..., Lg shown in Fig. 6. The
six 1D filters H;(z1, 22) used in (20) are to be designed from
a continuous-domain lowpass prototype function

_ leocs - —ek][ls---sK]T
[dody - - -dk][Ls - - - sK]T

P(s) 27

The discrete-domain prototype filter G(z) may then be ob-
tained by the bilinear transformation as

G(2) = P(5)l._g 221

_ laoay - -ak][lz7t -2
B [bObl s bK][lz—l .. .Z—K]T

—-K]T

(28)

where T is the intersample distance on the rectangular sample
grid and where P(s) is designed such that

M(w) = |G(e™)| = Molw| ™, 9)
as required.

The two axis-aligned filters, corresponding to L; and Ly,
can be implemented simply as Hi(z1,22) = G(z1) and
Hy(z1,22) = G(22), respectively. Now consider Ha(z1, 22),
corresponding to alignment on the off-axis line L, in Fig. 6.

Fig. 6. Six rotated ID filters.

The rotated function Hs(z1, 22) can be obtained from (27) by
the conventional s-domain rotation

s = s1cosf; + spsin b, 30)

such that

Hz(zl,zz)=P(3100502+32Sin02)|5”=L -1 (3D

Ti,2 71,2F1-
Similarly, the 3 other off-axis filters, corresponding to L;,
1 = 3, 5, 6, can be obtained as

Hi(zl,22)=P(slc050i+52sin0,~)|s”= . 12—t (32)

25Ty 5 Ty 241

However, we have chosen not to employ this conventional
approach to the design of the s-domain-rotated 2D filters along
L;,i = 2,3,5,6, but instead to use a sub-sampling technique
that corresponds to 1D filters along lines L.,i = 2,3,5,6.
These lines are very close to the lines L;,: = 2,3,5,6. The
implementation of 1D filters provides improved computational
efficiency relative to the corresponding 2D filters obtained in
(31) and (32). We note that, for Lo, tan(dz) = tan(n/6) =
0.577. We choose the line L5 having angle 65 such that
tan(#}) = 0.50. Similarly, we choose L] and 6},i = 3,5,6,
as follows:

tan(f3) = 2.0

tan(fg) = —2.0
tan(fg) = —0.5. (33)
The lines L}, Ly exactly intersect the sub-sample points
(2n1,ns2), as shown in Fig. 7, and the lines Lj, Ly exactly
intersect the sub-sample points (n;,2nz). We propose to
design 1D filters G;(z),t = 2,3,5,6, that have their sample
points along the lines L,i = 2,3,5,6, implying that their
frequency responses on wy,ws are rotated versions of the 1D
filter response M(w) = Mp|w|~*. The 1D filters are easily
designed from G(z); we need only take into account the
increased intersample distance of T = V/5 in (28). Let G s(z)
denote the discrete-domain prototype function that corresponds
to (28) with T = +/5. For the line L}, we employ the 1D filter
Hy(z1,22) = G\/g(zl,zz) = G(z), where the shift operator
z = 222, and corresponds to a shift by two pixels in n;
and one pixel in ng, which is implemented as a 1D recursion
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Fig. 7. Lines Lj, Ly, L{, LY, suitable for 1D filter implementation.

along the line Lj. Similarly, the remaining sub-sampled 1D
filters are given by

Hg(zl, Zz) = G\/g(zlzg) = G3(Z)
Hs(zl,zg) = G\/g(zl_lzg) = G5(2)

H6(21,22) = G\/g(zl_222) = Ge(z) (34)

The final 2D transfer function of the required filter is then
given by

6
H(z1,22) = [[ Gi(2) = G(21) - G(22) - G 5(2 22) -

=1

G 5(2123) - G 5(27'23) - G s5(21 222)

FRACTAL GENERATING FILTER  (35)

A. Design of the s-Domain Prototype Filter P(s)

The coefficients of a third-order (K = 3) prototype function
P(s) corresponding to (27) and (29) and with A = 0.3
have been obtained by the conventional numerical optimiza-
tion of M(w) to approximate that in (29) and are given
in Table I along with the coefficients for both G(z) and
G /5(z). The numerically-optimized magnitude frequency re-
sponse M(w) = |G(e’*)| is shown in Fig. 8 along with
the ideal response Mo|w|~>. Note that the zero-frequency
gain M(0) is tapered to unity, for practical reasons. The 2D
frequency response M(wy,ws) = |H(e/*1,e/%2)|, from (35),
is shown in Figs. 9(a) and 9(b). This 2D frequency response
closely approximates the required function M(w;,w2) =
@5/ (w?+w?)~3/2 and therefore the filters in Tabie I are used
to simulate 2D fractal landscapes. The contours of M (w1, ws)
are approximately circular and the function rolls off along the
lines L; in close agreement with ®}/%(w2 +w2)~3/2, as shown
in Fig. 10 for the case of L, L4. Between these lines, the
contours in Fig. 9 confirm that the approximation remains good
within the required domain of approximation in R2.

Given the order K for G(z), the total number of calculations
for each complete 1D recursion is (2K + 1) M; M, real multi-
plications and real additions. The total number of calculations
for all N 1D filtering operations is therefore

NE® = N@K + )My M,
NIR) — N(2K + 1)M M,.

mult

(36)

TABLE 1
COEFFICIENTS OF 1D PROTOTYPE FUNCTION HAVING A = 0.3 AND M = 3
k 0 1 2 3
P(s) Ck -0.0034291 -0.056713 -0.051339 0.19965
dy 0.0037880 0.16226 0.78074 1.0
G(2) ag 0.08817 -0.61461 0.69672 -0.19771
z
by 1.9468 -3.6071 2.06837 -0.37773
ag -0.021202 -0.078959 0.078921 -0.006193
Gz (2) by 0.32196 -0.34058 0.050994 -0.0020715

S03 02 -o1
T

Log gain

-1 09 08 07 06 03 -04
T T

-2 -2 -t -03 ° o8

Log frequency

Fig. 8. Numerically optimized M (w) of the 1D prototype function (solid
line) and ideal response (dashed line), K = 3 and A = 0.3.

A comparison of (36) with the DFT method and (9) confirms
that the proposed method is computationally more efficient for
very large images (typically where M3, M3 > 8192). For an
image of dimension M; = M, = 16,384, and using N = 6
and K = 3 for the prototype filter, a total of 11.274 x 10°
real multiplications and additions are required. This compares
to 15.032 x 10° real multiplications and 22.549 x 10° real
additions for the 2D FFT method by (9). For smaller images,
say My = M, = 512, the relative computational advantage is
less significant. For example, 11,010,048 real multiplications
and additions are required for the proposed method and
9,437,184 real multiplications and 14,155,776 real additions
are required for the DFT method.

B. Example: A 2D Simulated Fractal Landscape
Image with Spatially-Variant Roughness

The proposed method may be used to simulate a fractal
landscape of dimension M; = M, = 128 having surface
features that are determined by the spatially-variant spectral
exponent B(ni,ng), as shown in Fig. 11, from which we
expect relatively smooth landscape “terrain” in the lower-
left region, B(ni,nz) = 4.0, that becomes progressively
more rugged where ((ni,n2) tends to the lower limit of
3.0. A transition zone is used to change 3(n;,n2) gradually
and consists of 9 rings, each 4 pixels in width, as shown.
B(n1,n2) is decreased in increments of 0.1 through the 9
rings, from 4.0 at the interior boundary of the zone to 3.0 at
the exterior boundary. Corresponding 1D prototype functions
P(s),G(2),G 5(z), having A = 0.4,0.39,0.38,...,0.31,
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-1

Q

Fig. 9. Contour diagrams of M (w1,ws2) using (33), (@) —7 Swi.wg <,
M) —1r < ww2 £ .17

Log gain

. { i i
- s ' -os o os

Log frequency

Fig. 10. Cross-section of M(w,w2) in Fig. 9(a) along lines Ly and L4.

have been designed by numerical optimization and their s-
domain coefficients are provided in Table II.

The 1D recursion is performed on each of the lines
L,, L%, Ly, L4 Li, Ly, as described above. The spatial
variation of 3(n1, ng) is achieved during the recursion on each
line by simply switching to the coefficients of the appropriate
G(z) or G s5(z) at each pixel where 3(ny,n2) changes value.
Employing a 128 x 128 white noise source (implying o = 0)
as the input signal to the spatially-variant set of six rotated 1D
filters gives the 128 x 128 fractal landscape image y(n1,7n2)
shown in Fig. 12. The fractal dimension D of the surface

TABLE Il
COEFFICIENTS OF TEN 1D PROTOTYPE FUNCTIONS HAVING A = 0.40 10 0.31
k 0 1 2 3

N—o4p Ck 00023016 0034643 0042271 0.111625

dp 00025777 013165  0.70491 1.0
A—o030 0.0024078  -0.036518  -0.043158  0.12272

d, 00026954 013505  0.71380 1.0
n—oss 0.0024976  -0.03826  -0.044267  0.12955

di 00027938  0.13751 0.72006 1.0
neosr 0.002601  -0.040198 -0.045253  0.13676

di  0.002906 0.14046  0.72759 1.0
n—oss 0002709  -0.04226  -0.046152  0.14437

dy  0.0030235 014357  0.73542 1.0

cx  -0.0028183  -0.044377 0047151  0.15238
A=03 dp 00031417  0.14654  0.74281 1.0

cx 00029303  -0.04660  -0.048061  0.16085
A=034 d. 00032622  0.14955  0.75024 1.0

ck 00030525  -0.049001  -0.048863  0.16979
A =033 dy  0.0033919 0.15285 0.75830 1.0

ek 00031759  -0.051461 -0.049768  0.17921
A=0382 di  0.0035231 0.15599  0.76587 1.0
NP 10.0033066  -0.054095  -0.050545  0.18915

dy 00036609 015935  0.77389 1.0

128x128
e
B(ny,ny) =3.0
B(oy.ng) = 4.0
I 5
Boyn) "
ok 4
.

l:a
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Fig. 11. Profile of spectral exponent used in spatially-varying 2D recursive

filter example.

increases from the front-left corner to the far-right comer,
implying progressively increasing “roughness” as the recursion
proceeds away from the front-left corner.

VI. SUMMARY

In this contribution, we show that MD recursive digital
filtering techniques may be employed to simulate MD random
fBm. Hyperspherically-symmetric MD recursive filters may
be used to filter MD input noise images that have known
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Fig. 12. Simulated fractal landscape produced by spatially-varying 2D

recursive filtering.

Fig. Al. Intersection of the contours of My () with L;.

MD spectral density functions, producing realistic MD random
fractal images directly in the spatial domain. The method
improves upon current DFT-based methods of simulating MD
fBm by eliminating the undesirable edge effects produced
by the DFT and by permitting local variation of the surface
characteristics by spatially varying the spectral exponent 8
according to the location of the recursion in the image. This
technique has been demonstrated in this contribution for 2D
fractal landscape images. A 2D recursive filter has been used
to approximate the required circularly-symmetric magnitude
frequency response using six rotated 1D recursive filters.

APPENDIX A

In this appendix, we derive (23), which is the 2D frequency
response along each line L; of the serial connection of N
rotated 1D filters. Consider two lines, L; and L,k # i,
where L; is rotated from L; by an angle &, as shown
in Fig. Al. From (22), Mi(v) = 1/(v) where ~, =
w1 cos O+ wo sin 6. Hence, M () has gain contours that
are parallel to the line 74 = wy coséx+ wasindy = 0. We
wish to determine the contribution of M(+y;) to the overall 2D

magnitude frequency response M (w1, w2) along L;. Consider
a point ||w||; = (w} + w2)'/? on L;, as shown in Fig. Al.
The contour of M} (v,) that intersects L; at ||w]|2 corresponds
to vx = ||lw||2sinéi, as shown in Fig. Al. Therefore, the
2D magnitude frequency response M (w,ws) along L; due to
My (i) is

M (w1, ws) = Mi(||w||2 sin &)
1

= Mllzsm o) b

All My (i), k # 4, contribute in this way to M (w;,ws) along
L;, giving (23) for é; given in (24).
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