IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994 297

Fractal Block Coding of Digital Video

M. S. Lazar, Student Member, IEEE, and L. T. Bruton, Fellow, IEEE

Abstract—A video coding method is proposed which is based
upon fractal block coding. The method utilizes a novel three-
dimensional partitioning of input frames for which a number
of efficient block-matching search methods can be used, and
permits spatio-temporal splitting of the input blocks to improve
overall-encoding quality. After describing the basic fractal block
coding algorithm, the details of the proposed three-dimensional
algorithm are presented along with encoding and decoding re-
sults from two standard video test sequences, representative
of video-conferencing data. These results indicate that average
compression rates ranging from 40 to 77 can be obtained with
subjective reconstruction quality of video-conferencing quality.
The results also indicate that, in order to meet the compression
rates required for very low bit rate coding, it is necessary to
employ additional techniques such as entropy encoding of the
fractal transformation coefficients.

[. INTRODUCTION

RACTAL block coders (FBCs) have recently received

considerable attention in the context of image coding
[11-[17]. FBC algorithms, which rely upon the theory of
iterated contractive transformations [1], yield high compres-
sion ratios and can be used to provide simulated detail at
resolutions higher than that of the original image [2]. Although
the theory underlying the FBC algorithm is independent of
the number of dimensions of the input signal, there are
practical considerations which differ when encoding signals of
different dimension. In this contribution, a three-dimensional
(3-D) fractal block coding algorithm suitable for coding digital
video signals is introduced. Unlike the intra-frame video coder
presented in [3], the proposed method is based upon encoding
three-dimensional (3-D) data blocks and is thus a true inter-
frame coder.

One aspect of the 2-D FBC algorithm is the large associated
encoding time, due predominately to an extensive matching
search performed for each block of the input signal. For
image encoding, several authors have presented methods to
reduce encoding times [7]-[14]. In order to provide an efficient
mechanism for 3-D block matching, a novel partitioning
scheme of the input data frames is introduced for which
several efficient search methods can be used. Specifically,
target blocks of the matching process, called range blocks, are
selected from R-Frames, which are consecutive, temporally
non-overlapping groups of input frames. The source blocks
for the matching process, called domain blocks, are selected

Manuscript received October 14, 1993; revised February 8, 1994. It was
recommended by Kou-Hu Tzou.

The authors are with the Department of Electrical and Computer Engineer-
ing, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4.

IEEE Log Number 9402111

from D-Frames, which are consecutive groups of possibly
overlapping input frames.

This paper is organized as follows: in Section II a brief
review of the basic fractal block coding algorithm and some of
the associated theoretical background is presented; in Section
I1I, the various extensions and methods used in applying
the FBC algorithm to the coding of digital video signals is
introduced; test results, computation of compression rates,
computational considerations, and possible extensions to the
proposed algorithm are presented in Section IV; finally, con-
cluding remarks are given in Section V.

II. REVIEW OF FRACTAL BLOCK CODING

Much of the seminal work on fractal block coders has
been published by A. Jacquin [5] and M. F. Barnsley, et.
al., [1]-[4]. Although several variations and improvements
have been subsequently proposed to their methods [7]-{14],
most FBC type algorithms share similar characteristics. In
this section, the basic FBC algorithm for m-dimensional (m-
D) signals is described, and these common characteristics
are highlighted. We begin by briefly reviewing some of the
necessary theory from metric spaces which may be found, in
greater detail, in [1], [2], [5).

A. Relevant Properties of Metric Spaces

Consider the complete metric space, (Sim, d), where Sy, is
the space of discrete domain (i.e. sampled) finitely bounded,
real valued, m-D signals of size N1 X Ny x -+ X Np,
(where N1,Na,...,Ny, € 2,2 = {0,1,---}), such that
S C(ZXZ x--XZX R), and d is the (normalized)
Euclidean distance between the sample values of two members
of S. For a,b € S, d is defined by

1
d(a,b) = —_—_N1N2-~~Nm
N1 Na Nom 1/2
(355 St or) er
imlig=1 im=l

M

where i = (i1,42,..,im)(1 < ik < Ni,k = 1,2,...,m),
and a(i), b(), represent the signal sample values at the location
specified by the m-tuple (i1,%2,. .. ym)-

For the space Sy, the mapping, @ : Sy — S 1s said to
be contractive [1] if and only if

d(®(a), ®(b)) < s-d(a,b), 0<s<1, Y(a,b) € Sm.-
@

If S, is a complete metric space, then Banach’s fixed point
theorem [1] ensures that each contractive mapping Sy in has

1051-8215/94$04.00 © 1994 IEEE

298 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

associated with it a unique fixed point (attractor), py, such that
®(ps) = ps- 3

Moreover, if ® is contractive then & may be iteratively applied
to any point, ¢ € Sy, yielding, in the limit, the fixed point
(also known as the attractor) of ®[1]; that is,

lim ®°*(c) =ps, Ve € Sm, 4

n—oo

1711

where represents function composition.

B. Domain and Range Block Mapping

The underlying principle of fractal coding algorithms can be
understood in terms of (4). Given an input signal, ¢ € S, the
goal of the fractal coder is to find a contractive transformation,
®, for which g is sufficiently close to the fixed point of ®. If
such a ¢ can be found, then @ can be used as the code for q.
Decoding consists of starting with an arbitrary starting signal,
¢ € S, and iteratively applying @ until the fixed point is
reached.

Rather than attempt to find a contractive transformation
which acts upon the entire signal g, as in the original IFS
system proposed by Barnsley in [1], fractal block coders
partition the input signal into range blocks, r;, each of which
gets encoded by a single transformation, 7;. The source of
each range block transformation is a domain block, d;, taken
from the same signal. This block-wise “self-transformability”
results in the original signal being encoded in terms of itself;
it is for this reason that the term “fractal” is used [5]. Some
authors, however, prefer to think of this coding method as
“attractor” based [10].

The non-overlapping partition of the input signal, g, called
the range pool, {r;}, is formed from the input signal as follows

N
q:ig;ri, riNrj=0fori#j r;,€Ro, (5

where the size of each range block is given by By x By X - - - X
By, Ro represents the space of discrete range blocks of size
B; x By X --- X By, and where r; represents the restriction
of the input signal to the i*P range block. The domain pool,
{d;}, which serves as the basis for coding the range blocks, is
comprised of partitioning the input signal into a set of possibly
overlapping blocks of size Dy x Dy X -+ X Dy,

N,
q= 'Ul dj,dj € Ao, 6)
j=

where A is the space of discrete domain blocks of size
Dy X Dy X -+ X Dy, with (typically) D; > B,.

The mapping for the i*" range block, 7; : Ay — Ro,
consists of a contrast scaling, a;, offset o;, pixel1 shuffling
(isometry) u(e) : B9 — Ro, and m-D “spatial” contraction,

I'We take the liberty to use the term “pixel” to refer to the real-valued

elements within each range and domain block, regardless of the dimension of
the block.

S(e) : Ag — Ry, operations [5]. The result of applying this
mapping is an approximation to the it range block, ;, which
we write as follows:

7i = a6y (S(dn))) + oi,)

where N(i) is a domain block selection function, which
associates the i*? range block with a domain block from {d;},
and I(i) is an isometry selection function, which maps the *
range block to one of a set of possible isometry operations.

In addition to the range block mapping described by (7),
several other functions and mappings have been proposed in
the literature [10] [11] [14]. In this contribution, our attention
is restricted to the range block mapping given in (7), which
is based on Jacquin’s work. Other proposed mappings can, in
most cases, easily be accommodated within the video coding
framework developed herein.

C. Domain Block Searching and Multi-Level
Partitioning Within Fractal Block Coders

The FBC encoding process consists of determining, for all
range blocks, the mapping parameters in (7) such that the
distance between each range block and its approximation,
d(;,7;), is minimized. The set of resulting transformations,
T;, is then used as the resulting code for the signal. Entropy
encoding can be used to further compress the transformations
[2).

Typically, the Euclidean metric described in (1) is used for
the distance function, d(7;,7;), in which case there exists a
closed form expression for evaluating a; and o; for a given
dj, S(e),and +(e) [15]. Since the spatial contraction operator
is independent of the range block (it is fixed throughout
encoding/decoding), the FBC encoding process requires that
a; and o; be computed for candidate values of d; and i (e),
with those parameters resulting in the minimum approximation
error selected for the final code, 7;.

It is the search over possible d; and ;(e) which results in
the large encoding times associated with the FBC algorithm.
Several authors have proposed various approaches to reduce
this search space. These methods include the use of a small
image-independent set of domain blocks along with image
dependent blocks [11], orthogonalizing the space spanned by
the domain blocks [10], searching only domain blocks which
originate from the area near the range block [12], the use
of multiresolution information to constrain the domain block
search and searching randomly selected areas of domain pool
[71.

Similar to all block coding algorithms, FBCs also exhibit
trade-offs between block size and the amount of compression
achieved. Rather than use a fixed range block size, it has
been proposed to use various block sizes depending upon
the approximation error obtained per block [5] [12] [13] [15].
A simple and efficient method to incorporate different range
block sizes when encoding images is the quadtree approach
[15]. Extending the quadtree approach to m-D, a range block,
originally of size By X By X - - - X By, is split into 2™ blocks
each of size By /2 x By/2 X - - - X By, /2 if the error, d(7;,7:),
is beyond a certain threshold.

LAZAR AND BRUTON: FRACTAL BLOCK CODING OF DIGITAL VIDEO

If the space of discrete range blocks of size By /2"x B3 /2" X

- X Bm/2" is denoted by R, then, for a maximum of
N, quad-tree partitions, the m-dimensional partitioning of the
input signal given in (5) can be re-written as

N
qzigln, r,-ﬂrj:@fori;éj,rie{§R0,§Rl,...,qu}.
®
Using this notation, the transform for each range block within
a multi-level partitioned scheme is written as 7; : A — R,
where A, is the space of discrete domain blocks of size
D1/2" x D27 X --- X D,,,/2". In this case, the contraction
and isometry operations in (7) are generalized to S(e) : Ay —
R, and 1.(0) : R, > R, 0<r <N, respectively. Note that
Ng is dependent upon the splitting error threshold level and
partitioning levels, N, used. Thus, unless special restrictions
are made, a multi-level partitioned FBC requires a variable
rate coding scheme.

D. Contractivity Considerations

Given the transform for each range block, 7;, we may write
the transform for the entire signal, 7, as
N
T= _g;'ri, 7:Sm — S (&)
If 7 is contractive, then (4) can be used to perform the
decoding operation. Specifically, the signal may be decoded

by iteratively applying 7 to any point, fo € S, where the
nt® iterate is given by

fn =7"(fo)-

The fixed point of 7, fp, will be the decoded signal. For
the encoding of images (m = 2), the number of iterations
required for convergence of (10) is small (we have found that,
in practice, fs can be used as an approximation of f, with
little error).

It is important to understand the range of parameter values
in (7) such that 7 is sufficiently contractive for convergence
of the decoding algorithm. Viewed strictly at a block level,
it is necessary that |a;| < 1 in order for the corresponding
7; to be contractive (using the Euclidean metric). In practice,
however, this condition has been found to be unnecessarily
restrictive [8] [16] [17]. This is due to the fact that each
7, is dependent upon other 7; which have been applied at
previous decoding iterations. Thus, even if there are some 7;
for which ja;| > 1, their behaviour may be dominated by
other 7; which are sufficiently contractive to allow the entire
signal transform, T, to be contractive and hence for decoding
to converge. A transformation, 7, for which this is case is
known as an eventually contractive mapping [10], [17], [18].

It is also interesting to note that, in order to be contractive
under the Euclidean distance metric, it is not strictly necessary
that (7) contairi the m-D spatial contraction operator, S(e) :
A, — R,.. This is a result of the metric (1) being defined only
over pixel values and not upon any “spatial” properties of the
domain block. It is, therefore, possible that the domain blocks
and range blocks be of the same size. The principal motivation
for using the operator, S(e), however, is to propagate signal

(10

299

detail from one scale to another. A more detailed discussion
of this issue can be found in [15].

III. THREE DIMENSIONAL FRACTAL BLOCK CODING

In this section, a three-dimensional (3-D) FBC algorithm
suitable for the encoding and decoding of digital video signals
is described. Rather than apply the 2-D FBC algorithm on
an intra-frame basis [3], the proposed coder uses 3-D range
and domain blocks. The use of 3-D blocks has the potential
for higher compression rates than intra-frame coding since
the number of additional coefficients required to encode each
range block can be selected to be considerably smaller than
the pixels within the extra frames included in the range block.

In order to simplify the number of possible 3-D operations,
we adopt the philosophy that spatial and temporal operations
be distinct. In other words, operations on domain and range
blocks are applied first to the pixels within each frame of the
block, then upon the frames themselves.

A. Partitioning the Input Signal into R-Frames and D-Frames

One of the principal differences between 2-D and 3-D FBC
coding is the fact that 2-D signals (images) are naturally
bounded in all dimensions, whereas video signals are naturally
bounded in only two (spatial) dimensions and can be consid-
ered, for practical purposes, infinite in the third (temporal)
dimension. It is therefore important that any video block
coding scheme contain a method of temporal partitioning.
For example, in the recently proposed MPEG-1 video coding
scheme, it has been suggested that, for a ‘large class of
video sequences, the difference between interpolated frames
(I-Frames) (from which predicted frames are derived) should
be about 10 frames [19].

For the proposed 3-D FBC algorithm, we permit the original
size of range blocks and domain blocks to be Bx BxT and
M B x MB x M3T, respectively, where M, M, are spatial
scaling values, and M3 is a temporal scaling value. Range
blocks are selected from R-Frames, which are consecutive,
non-overlapping groups of input frames. The length of each
R-Frame is restricted so that an integer number of range blocks
temporally fit in the R-Frame; that is, each R-Frame must be
of length kT, k € Z,k # 0. Associated with each R-Frame
is a D-Frame, which is the source of the R-Frame’s domain
blocks. A D-Frame must end at the same temporal location
as its associated R-Frame, but may start before the beginning
of that R-Frame. The length of a D-Frame is restricted to
IM,T frames, where [€ Z,l # 0. The R-Frame starting
at time t is denoted by R-Frame(t), while the associated D-
Frame is denoted D-Frame(t). Addresses within an R-Frame
are relative to the last frame (which is also the last frame of
the corresponding D-Frame), and increase along the negative
temporal axis.

Using parameter values k& = 2,1 = 4, M; = My, =
2, M3 = 1, and T = 4, the partitioning of an input signal
into R-Frames and an example R-Frame with its associated D-
Frame are illustrated in Fig. 1. Note that, for this selection of
parameters, the D-Frame contains pixels which are outside of
the corresponding R-Frame. It is therefore possible that a range

300 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

Current Input Frame

Range block addresses within the
R-Frames are relative to these points

(a)

Current Input Frame

Example Domain Blocks

Example Range
Block

R-Frame(t)

-+
kT Frames

D-Frame(t)

IM 3T Frames

®)

Fig. 1. (a) Partitioning of Input Sequence into R-Frames.(b) Example
R-Frame and associated D-Frame.

block, 7;, be mapped from a domain block which is outside
of its corresponding R-Frame. An advantage of this approach
is that, for such range blocks, a single iteration can be used
for decoding. Note that, for these parameters, the fractal code
is no longer self-similar at the R-Frame level, although it is
self-similar when viewed at the signal level. The disadvantage
to this parameter selection is that the domain block search
space is large, and thus encoding time is increased and the
compression rate decreased when compared to parameters
yielding a smaller D-Frame.

B. Range Block Mapping

As stated earlier, we adopt the form of range block mapping
as given in (7). In this section, the various mapping parameters
used for the proposed 3-D FBC are described.

Spatial Scaling Function For simplicity, pixel averaging
over My M, M; pixels is used for “spatial” contraction operator
S(e). If the pixel value at location (z,y, z) within a block g
is denoted by g(z,y, z), then S(e) can be written as

S(q(z,y,2))
M;—-1Ms—1M3-1

z 2 Zq(w+a,y+b,z+c),
c=0

1
M MMs =5 (=
an
where it is understood that if M; < 1, no summation in the
*h dimension occurs. In creating a spatially scaled block, (11)
is applied to every M pixel in the i*} dimension within g.

Isometry Operation (Pixel Shuffling): For 3-D blocks, con-
siderably more pixel shuffling operations are possible than
for 2-D blocks. However, many such operations are not
meaningful because, for most practical video signals, pixel
values generally change smoothly through time. In order to
keep the number of isometries to a reasonable value (and
in keeping with the philosophy adopted earlier), isometries
are restricted to operate on either an intra-frame basis, where
the pixels within frames are shuffled, or on an inter-frame
basis, where the order of the frames themselves are shuffled.
We can therefore express the isometry operation, I(z), in
(7) as a combination of two isometries, J(i) = Linter(%) +
Liniea(3), where Lipge; (3) and inera(2) represent the inter-frame
and intra-frame shuffling isometries, respectively.

The intra-frame isometries that we use, eight in total, are
the same as those described by Jacquin in [5], while only
two inter-frame isometries are used: an identity operation,
in which the frame ordering remains unaltered, and a time-
reverse operation, in which the order of the frames is reversed.
Using these isometries, one bit is therefore required to identify
Linter(3), and three bits are required to identify Tintra (7).

Domain Block Search Method: The speed of the encoding
algorithm is basically limited by the determination of the
domain block matching function, N (). For 3-D coding, the
number of possible blocks within the search space (i.e. the
D-Frame) makes a full search of the space prohibitive. Thus,
an efficient search strategy must be used.

As stated earlier, a number of search strategies have been
proposed for use in the 2-D FBC algorithm. In this contribu-
tion, we restrict our attention to using the 3-D extension of
the local search, in which domain blocks originating “near”
to the range block being encoded are considered as possible
candidates for N(z) [12]. Specifically, if the address of the
range block within the D-Frame is (ni,ng2,n3) then only
domain blocks whose addresses are given by

(’IL1 =+ lel,nz + kng, ns + k‘3L3),

-K;<ki<K;, 1=123, (12)
are searched.? The values (L1, Lo, L3) are search step-sizes,
while the values (K, K3, K3) determine the size of the search
region. Note that, since (L1, Lz, L3) and (K1, K3, K3) are

2Clearly, (12) will yield some invalid search addresses for those range
blocks near the boundaries of the R-Frame. In such cases, no alternate test is
used during searching, thus limiting the domain pool for boundary blocks.

LAZAR AND BRUTON: FRACTAL BLOCK CODING OF DIGITAL VIDEO

Do Not Split Block

Max. Percentage
Diff. in frame errors
within block > T,

Split Block Temporally

Split Block Spatially

Fig. 2. Flowchart Description of Spatio-Temporal Range Block Splitting
Method.

fixed for all R-Frames, this scheme has the advantage that
only the values of (k1, k2, k3) are required to address a domain
block, with each k; using [log,(2K;)] bits to encode ([a]
indicates the smallest integer no larger than a).

Spatio-Temporal Range Block Splitting: As mentioned ear-
lier, a quad-tree approach is often used to split range blocks
when encoding errors are too high. In addition to using 3-
D quad-tree partitioning, known as oct-tree partitioning, we
introduce a novel method known herein as spatio-temporal
partitioning. In spatio-temporal partitioning a range block is
split either spatially, by 4, or temporally, by 2, depending upon
the distribution of errors within the original range block and
upon the overall encoding error. A flowchart description of
the spatio-temporal partitioning algorithm is given in Fig. 2,
and is described below.

If the overall block encoding error, d(7;,7;), is beyond the
threshold, T,, and the errors are distributed evenly throughout
the frames of the range block, then the block is split spatially
into four blocks whose depths remain unchanged. On the other
hand, if the encoding error for the block exceeds the threshold
T, and the errors are distributed unevenly within the blocks’
frames, the block is split temporally into two range blocks
which have the same spatial size but which are half the depth
of the original block.

The error between the maximum and minimum frame
encoding errors, normalized by the maximum frame encoding

301

error, is used as an indication of the error distribution within
a range block. The frame encoding errors are determined by
computing the distance between each frame from the encoded
block, #;, and the original frames from the block r;. If the
normalized difference between the maximum and minimum
of these distances is beyond a threshold value T;, the error
distribution is deemed to be “uneven”, otherwise, the errors
are assumed to be distributed evenly throughout the block.

When using spatio-temporal partitioning, we denote the
maximum number of spatial splits a block may undergo by
N,, and the maximum number of temporal splits a block may
undergo by N;. Therefore, assuming that a predetermined or-
dering of range blocks is used when storing the transformations
for an R-Frame, each range block requires [logy(Ns + 1)] +
[logy (N +1)] bits to encode its partition level. (This number
can be reduced by using a more sophisticated range block
ordering scheme. We do consider this possibility here.) For
3-D oct-tree partitioning, each block requires [logz(No + 1)]
bits to encode the partition level.

C. Algorithm Pseudo-Code

Using the above mapping parameters and range block
partitioning method, a pseudo-code description of the proposed
3.D fractal block coding algorithm is given (see top of next

page).

D. Considerations in Decoding

Decoding a fractal block code consists of iteratively ap-
plying the transformation associated with each range block
until there is sufficiently little difference between the output
from successive iterations [5]. For the input data partitioning
scheme presented here, each R-Frame is decoded by iteratively
applying the corresponding transformations a fixed number of
times. Note that in order to decode the R-Frame, all frames
corresponding to the appropriate D-Frame are required. If the
D-Frame parameters are such that the D-Frame contains data
outside of the corresponding R-Frame, as in the example pre-
sented earlier, this data will also be required during decoding
(but will not be iterated since it is outside the R-Frame). As
stated earlier, range blocks whose corresponding domain block
is completely contained in such an area, can be decoded in a
single iteration.

Similar to all FBC decoding schemes, the number of decod-
ing iterations is dependent upon how close the initial values
of the R-Frame are to the fixed point of its transformation. In
2-D (image) coding, it is typical to start with a zero valued (all
black) image as the initial point for decoding. However, in 3-
D coding, the fact that there is often little change over several
frames (particularly in video conferencing applications) can be
used to advantage. In the intra-frame coder proposed in [3],
the previously decoded frame is used as the starting point for
the next frame to be decoded. We adopt a similar approach;
specifically, the first decoding iteration for R-Frame(t) is the
same as the final iteration for R-Frame(t-kT). Results from
varying the number of decoding iterations using this type of
R-Frame preloading, are given in Section IV.

302 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

Pseudo Code Description of the 3-D Fractal Block Coding Algorithm
/* R-Frame processing */
while R-Frames to process
initialize current R-Frame, R-Frame(t), and associated D-Frame, D-Frame(t);
initialize range pool {r;} for R-Frame(t) such that blocks are of size B x B x T}
/* process each range pool block */
for each range block r; in {r;} do
best_transform = {a; = 0; = NULL, I(i) = NULL, N(i) = NULL };
best_error = infinity;
/* perform local search */
for all d; from D-Frame (t) satisfying equation (12) do
for each possible intra-frame isometry, Liptra, do
for each possible inter-frame isometry, Iinter, do
compute parameters « and o for current Iingra, inter and d;;
compute approximation block, 7;, from mapping parameters;
if d(Fi,7;) < besterror then /* found a better block */
best_transform = {a = a;,0; = 0,1(i) = Iinter + Linea, N(1) = 5}
best_error = d(7;,7;);
endif
endfor /* intra-frame isometries */
endfor /* frame-based isometries */
endfor /* local search */
/* decide if block is to be split */
if best_error < T, then
accept best_transform as transform for range block r;;
else /* shown below is the spatio-temporal splitting algorithm */
/* compute approximation error for each frame from r;, and
compute maximum normalized difference */
max_framediff = MaxFrameerror(7;)—MinFrameerror(7;);
normalized_diff = max framediff / MaxFrameerror(r;) * 100.;
if normalized_diff > Ty AND NumTemporalSplits(r;) < N then
split r; into 2 range blocks, each one half the depth of r;;
increment NumTemporalSplits for the newly split blocks;
add newly split blocks to {r};
else if NumSpatialSplits(r;) < Ns then
split r; into 4 range blocks, each one quarter the spatial size of T;;
increment NumSpatialSplits for the newly split blocks;
add newly split blocks to {r;};
else /* maximum number of splits for this block */
accept best_transform as transform for range block r;;
endif
endif /* block to be split */
endfor /* range block processing for current R-Frame */
endwhile /* R-Frame processing */

IV. RESULTS AND DISCUSSION

In this section, results are presented from the encoding
of two “standard” video sequences, representative of video
conferencing data (i.e. the sequences do not contain significant
camera movement such as panning and zooming). We begin
by presenting how the compression rate of the proposed
algorithm is computed, followed by example parameter values
and associated encoding results.

A. Computation of the Compression Rate

One of the advantages of the FBC decoding algorithm is that
it is possible (due to the spatial contraction operation S(e)) to

create simulated detail at a higher resolution than of the input
data. It has been claimed that creating such detail increases
the “effective” compression rate of the FBC algorithm [2]
[16]. We consider any additional detail created at resolutions
higher than that of the original image to be “interpolated”
data, which, for the purposes of this paper, are not counted in
any compression rate calculations. (Although it is possible to
create this simulated detail with the methods described herein,
we only present decoding results which are at the resolution
of the original input data.)

The compression rate of the proposed 3-D FBC algorithm
depends upon several factors: the number of range blocks per

LAZAR AND BRUTON: FRACTAL BLOCK CODING OF DIGITAL VIDEO

303

TABLE 1
PARAMETER VALUES USED FOR 3-D FBC ENCODING
Value
Parameter Test 1 Test 2 Test 3 Comments

B 8 8 8 Original spatial rangle block size (pixels)
T 8 8 8 Original temporal range block size (frames)
k 1 1 1 R-frame depth factor; yields R-Frames 8 frames deep
1 1 1 1 D-Frame depth factor; yields D-Frames 8 frames deep
No N/A 1 N/A Number of oct-tree splits
Ns 1 N/A 1 Maximum number of spatial splits for a range

block using spatio-temporal splitting
N: 3 N/A 3 Maximum number of temporal splits for a

range block using spatio-temporal splitting
Ts 0.5 0.5 0.5 Block splitting threshold value - used as both

oct-tree threshold and spatial threshold in spatio-temporal splitting
T; 17% N/A 17% Temporal Split threshold value
Li=L, 4 4 1 Spatial search step size (pixels)
Ly 1 1 1 Temporal search step size (frames)
K=K 2 2 1 Spatial search size
K3 1 1 1 Temporal search size
My =M 2 2 2 Domain block scaling value - spatial
M3 1 1 1 Domain block scaling value - temporal
a Max: 1.5, Max: 1.5, Max: 1.5, Limits of scaling value used in range block

Min: -1.5 Min: -1.5 Min: -1.5 mapping (uniformly quantized)
ap 5 S 5 Number of bits used to represent scaling value
[Max: 255, Max: 255, Max: 255, Range of offset value used in range block mapping (uniformly
Min; -253 Min: -253 Min: -253 quantized)

0B 6 i 6 6 Number of bits used to represent offset value

R-Frame (which is, in turn, dependent upon the multi-level
partitioning parameters, original range block size and input
data); the R-Frame and D-Frame sizes; and the number of
bits required for each range block transformation.

Using spatio-temporal partitioning and the parameter values
from the previous section, the number of bits, B;, required to
encode the transformation for each range block is given by

B; = ag + 0B + Ip + [logy (N, + 1)] + [logy(Ne + 1)]

3
+)_[logy(2K)]

i=1

13)

where a and 0, represent the number of bits required to store
the scaling and offset values, respectively, Ip and represents
the number of bits required to identify the inter-frame and
intra-frame isometries. For the isometries used herein, and
described earlier, Iz = 4. Using the oct-tree partitioning
method, B; is given by

3
B; = ag+op+Ip+[logy(No+1)] +Z [loga(2K7)]. (14)
=1
If the number of range blocks required to encode R-Frame(t)
is denoted by Ng(t), the number of bits needed to encode
R-Frame(t) can be expressed by

R-Frame(t)B = NR(t)B;, (15)

while the number of bits-per-pixel (bpp) for R-Frame(t) is
given by

NR(t)Bi

R-mee(t)bpp = m’

16)

where N; and N, denote the number of width and height of the
input frames, respectively. Note that Ng(t) is constant valued
for each group of kT frames (corresponding to the length of
each R-Frame). The compression rate within each R-Frame
can found by dividing the number of bits originally used to
represent each pixel by R-Frame(t)bpp-

B. Coding Results

The first 144 frames, of size 360 x 288 pixels, from the
standard “Salesman” and “Miss- America” 8-bit greyscale
video sequences have been encoded using the proposed 3-
D FBC algorithm using three sets of encoding parameters,
referred to as “Test 17, “Test 27, and “Test 3”. The parameter
values corresponding to these test modes are provided in Table
1. In “Test 17 and “Test 3", spatio-temporal range block
splitting has been used, with “Test 3” employing a more
restrictive domain block search-space than “Test 1”. In “Test
2”, similar parameters to “Test 17 have been used but with
range block splitting performed using the oct-tree method.
We make 1o claim as to any optimal nature of these coef-
ficients; our experience has shown that the parameters leading
to the best compression and highest quality reconstruction
are dependent upon the nature of the video sequence being
encoded.

Decoded frames 107-109 from the “Salesman” “Test 17
sequence, and decoded frames 75-77 from the “Miss America”
“Test 1” sequence are shown in Fig. 3 and Fig. 4, respectively.
Detailed sections of Frame 107 from the “Salesman” “Test 1”
sequence, and of Frame 75 from the “Miss America” “Test 1”
sequence are shown in Fig. 5. Six iterations of the decoding
algorithm have been used in both cases, with the initial values

304 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

Fig. 3.

Decoded Frames 107-109 from “Salesman”, “Test 1” Parameters, 6
Decoding Iterations.

of the R-Frame preloaded with the results from the previous R-
Frame’s decoding sequence, as described earlier. The initial
pixel values for R-Frame(0) have been set to zero (i.e. “all
black”).

Fig. 4. Decoded Frames 75-77 from “Miss America”, “Test 1” Parameters,
6 Decoding Iterations.

The compression rates and the peak-to-peak signal to noise
ratio (PSNR) are shown in Fig. 6. The PSNR between two
signals, a, and @ has been computed using

PSNR = 10log;, < a7

2552
MSE(a, @)

LAZAR AND BRUTON: FRACTAL BLOCK CODING OF DIGITAL VIDEO

Fig. 5. Detail from Decoded Frame 107 from “Salesman” in Fig. 3 and from
Decoded Frame 75 from “Miss America” in Fig. 4.

where MSE(a, @) represents the mean squared between the
signals a and . The effects of varying the number of decoding
iterations upon the PSNR of the “Salesman” “Test 1” sequence,
while still using an R-Frame preloading scheme, is shown in
Fig. 7.

From the results shown in Figs. 3-5, it is clear that, al-
though there are noticeable artifacts present in the “Test
1” decoded frames, the subjective quality of reconstruction
is sufficient for many video-coding applications, including
video-conferencing. When the corresponding sequences are
played back at video rates, these artifacts manifest themselves
as irregular or jerky motion and are most noticeable in
those frames which contain significant object motion. The

305

120) A T i

8
kI

Miss America (Test2) |
- Miss America (Test3)
i

Compression Rate
3
Ll

Peak SNR (dB)

0 20 40 60 80 100 120 140

Fig. 6. Compression Rate and PSNR for “Salesman” and “Miss America”
Sequences.

corresponding results for the “Test 2” sequences also contain
these motion artifacts. However, in the “Test 2” sequences,
these artifacts are more noticeable and consequently more
perceptually annoying. The results for the “Test 3” sequences
are similar to the “Test 1”7 sequences, but contain some-
what more noticeable blocking. In addition, the “Test 3”
sequence of “Salesman” occasionally contains areas which
have “saturated” that is, which are all white. We conjec-
ture that the reduced search space used for the “Test 3”
sequences results in some domain block mappings which are
not eventually contractive and hence causes this saturation
artifact.

The compression rates, shown in Fig. 6, clearly demonstrate
the effects of the multi-level partitioning, as indicated by
the different compression rates obtained for various R-Frame.
Therefore, because the bit-rate is related to the compression
rate, a buffered decoder would be required for fixed-bandwidth
applications of this algorithm.

The effect of varying the number of decoding iterations upon
the PSNR of a reconstructed sequence, as shown in Fig 7,
illustrates two points. The first, is that increasing the number
of decoding iterations past five or six iterations yields little
increase in the overall PSNR of the reconstructed sequence. It
is for this reason that we have used six decoding iterations
for reconstruction. The second point is in relation to the

306

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

TABLE II
DETAILS OF ENCODING FOR R — Frame(0) FOR “TESTS 1-3” OF “MISS AMERICA”

RRange block Number of range

Number of range blocks

Number of domain Computational Cost

size - number of pixels blocks tested accepted blocks tested (Adds, Mults)
()
Test
1 8x8x8 - 512 1620 1487 24012 (2.16x10%, 9.83x 10%)
8x8x4 - 256 152 2 3555 (1.60x 108, 7.28x 107)
8x8x2 - 128 164 0 4464 (1.00x 108, 7.28x107)
8x8x1 - 64 66 0 1904 (2.14x107, 9.75x 10%)
4x4x8 - 128 228 196 2475 (5.58x 107, 2.53x107)
4x4x4 - 64 336 72 7923 (8.92x107, 4.06x107)
4x4x2 - 32 1052 595 29083 (1.64%108, 7.45x107)
4x4x1 - 16 1178 1178 34681 (9.76x 107, 4.44x107)
Total arithmetic operations = (2.90x 10°, 1.30x 10°)
2 8x8x8 - 512 1620 1487 24012 (2.16x 10, 9.83% 10%)
4x4x4 - 64 1064 1064 21828 (2.46x 108, 1.12x 10%)
Total arithmetic operations = (2.41x10°, 1.10x10%)
3 8x8x8 - 512 1620 1457 6319 (5.69% 108, 2.59% 10%)
8x8x4 - 256 136 0 816 (3.68x 107, 1.67x107)
8x8x2 - 128 136 0 816 (2.22x107, 1.00x107)
8x8x1 - 64 50 0 984 (4.46x 105, 2.03x 10%)
4x4x8 - 128 380 254 1329 (2.99x 107, 1.36x107)
4x4x4 - 64 524 149 3016 (3.40x 107, 1.54x 107)
4x4x2 - 32 1194 763 8372 (4.72x107, 2.14x107)
4x4x1 - 16 1062 1062 8084 (2.28x107, 1.03x 107)
Total arithmetic operations = (7.66x 108, 3.48x 108)
20

Peak SNR (d8)

Fig. 7. The effect of varying the number of decoding iterations upon the
PSNR for the “Test 1” encoded sequence of “Salesman”.

preloading of the R-Frames. Specifically, the average PSNR
value for R-Frame(0), corresponding to the first kT = 8
frames, is consistently lower than all other R-Frames for the
number of decoding iterations tested. In fact, when less than
five decoding iterations are used, the PSNR values for the
first few R-Frames are typically lower than those for the
subsequent R-Frames. This indicates that preloading of the
R-Frame is an important factor in reducing the number of
decoding iterations.

In general, the results presented here are consistent with
other proposed FBC algorithms, and indicate that the encoding
quality is dependent upon the size of the domain pool and

the manner in which range blocks are partitioned. The results
also indicate that, while oct-tree partitioning yields better com-
pression than spatio-temporal partitioning, the flexibility of
spatio-temporal partitioning results in higher quality encoded
sequences.

C. Computational Considerations

In this section, the computational cost of encoding a typical
R-Frame is investigated. Note that these results reflect the local
domain block search method that is used.

For a range block having a total number of pixels N,
there are approximately 7/Nadditions and 4N multiplications
required to evaluate «;, o;, and d(r;,7) for each tested
spatially contracted domain block. In order to obtain a spatially
contracted domain block, S(d;), (11) is applied to d; N times,
which introduces an additional M; M>M3N additions and N
multiplications (we assume that the division operation in (11)
is computationally equivalent to a multiplication). For the
values of M; used herein, this yields a total of 11N additions
and 5N multiplication operations. Finally, since we use a total
of sixteen isometry operations, each domain block tested as a
possible candidate for N (i) requires a total of C4 = 176N
additions and Cp; = 80N multiplications.

In Table II, encoding results for R-Frame(0) using all three
test modes are summarized for the “Miss America” sequence.
Included in Table H are the number of range blocks tested and
accepted at each partition level, the total number of domain
blocks tested as candidates for V() at each partition level, and
the total number of arithmetic operations required to encode
the R-Frame.

LAZAR AND BRUTON: FRACTAL BLOCK CODING OF DIGITAL VIDEO

The results from Table II reflect several factors about the
proposed 3-D FBC algorithm and the various test modes
used. First, the oct-tree range block splitting algorithm (“Test
2”) requires slightly fewer arithmetic operations and yields
higher compression that corresponding spatio-temporal algo-
rithm (“Test 17°). However, the cost of this higher compression
is lower reconstruction quality, both in terms of PSNR and
subjective quality. Next, and as expected, the number of
arithmetic operations from the “Test 3 sequence, which yield
a reduced domain block search space, are fewer than for
either the “Test 17 or “Test 2” sequences. It is interesting to
note that the reconstruction quality of the “Test 3” sequence
is only slightly lower than for the “Test 1” sequence, but
higher than for the “Test 2 sequence. Finally, it is clear from
Table 2 that the FBC encoding algorithm is computationally
intensive. (For example, the average number of additions and
multiplications per pixel for the “Test 3” sequence are 924
and 420, respectively.) Clearly, in order to use FBC for real-
time systems, a more efficient domain block search strategy
is required.

The computational cost of decompression is primarily de-
pendent upon the number of decoding iterations used. For
the parameters selected herein, it can be shown that each
pixel requires 5 additions and 2 multiplications per iteration.
Assuming six decoding iterations are sufficient, it is clear that
decoding can be performed considerably faster than encoding
and that real-time decompression is possible.

D. Recommendations for Improving the
Algorithm Performance

For the “Test 1” “Salesman” and “Miss America” sequences,
the average compression rates are 41.80 and 74.39, respec-
tively. Assuming a frame rate of thirty frames per second, that
an average compression rate of 40 is possible for typical video
sequences (using a buffered decoder), and that the compression
can be performed in real-time, the number of 8-bit (grey-
level) pixels which can be transmitted at 64 kbits/second is
10.67 x 103, which is roughly equivalent to a frame size
of 120 x 80 pixels. For very low-bit rate applications, it is
therefore advantageous to further increase the compression
achieved by the proposed 3-D FBC algorithm.

Two principal ways in which this can be achieved are by
entropy encoding the transformations for each R-Frame and
by using “carry forward” or “constant” blocks [3]. By entropy
encoding the FBC coefficients for each R-Frame, any structure
(that is, correlation) inherent within the transformations can be
removed, resulting in a lower bit-rate or higher compression
rate. (We have observed that the parameter values within R-
Frame transformations do exhibit some structure, particularly
with respect to the inter-frame isometry operations).

Constant blocks can be further used to represent those range
blocks within an R-Frame which do not change significantly
through time. In other words, if there are a set of range blocks
representing a constant background over several frames, only
the transformation for one of the corresponding range blocks
would be required with the other range blocks using the same
code.

307

V. CONCLUSION

In this paper, the basic fractal block coding algorithm has
been reviewed. A novel three-dimensional fractal block coding
algorithm has been proposed in which the input video stream
is partitioned into R-Frames, from which range blocks are
obtained, and D-frames, from which the associated domain
blocks are selected. This method of partitioning permits do-
main block search methods, developed for image encoding,
to be used in three-dimensional fractal coding. The proposed
method utilizes three-dimensional range and domain blocks,
which allows for higher compression than frame by frame
video compression. In addition, a novel spatio-temporal range
block splitting mechanism is described in which the decision
to split a range block is based upon the overall encoding error
as well as the distribution of errors within the approximated
block.

After presenting the details of the proposed algorithm,
encoding and decoding results, obtained from two standard
video test sequences, are given. The results indicate that
average compression rates of 40 to 77 can be achieved with
subjective quality suitable for video-conferencing applications.
However, the high computational cost of the encoding algo-
rithm and the approximately fixed cost of decoding suggests
that the proposed algorithm may be better suited to asymmetric
applications, such as multi-media. In order to make 3-D fractal
block coding suitable for very low bit rate systems, the use
of entropy encoding and constant (or carry-forward) blocks
would be advantageous.

ACKNOWLEDGMENT

The authors acknowledge funding for this work by MI-
CRONET, the (Canadian) Federal Network of Centres of Ex-
cellence on Microelectronics, Devices and Systems, the Nat-
ural Sciences and Engineering Research Council of Canada,
and the University of Calgary through their Silver Anniversary

Scholarship program. The authors also thank the reviewers for

their helpful comments and suggestions.

REFERENCES

[1]1 M. F. Bamnsley, Fractals Everywhere, Academic Press, 1988.

[2] M. F. Barnsley and L. P. Hurd, Fractal Image Compression, AK Peters:
Wellesley, Massachusetts, 1993.

[3] L. P. Hurd, M. A. Gustavus and M. F. Barnsley, “Fractal video
compression,” 37th Annual IEEE International Computer Conference
(COMPCON), pp. 41-42, 1992

[4] M. F. Barnsley and A. Sloan, United States Patent #5065447, “Method
and apparatus for image compression,” 1991.

[5] A.Jacquin, “Image coding based on a fractal theory of iterated contrac-
tive image transformations,” /EEE Trans. Image Processing, vol. 1, no.
1, pp. 18-30, Jan. 1992.

[6] — ., “Fractal Image Coding: A Review,” Proceedings of the IEEE,
vol. 81, no. 10, pp. 1451-1465, Oct. 1993.

[7]1 M. S. Lazar and L. T. Bruton, “Efficient fractal block coding using
multiresolution decomposition based search constraints,” University of
Calgary, Department of Electrical and Computer Engineering, Technical
Report, October 1993.

[8] G.Dien, S. Lepsoy and T. Ramstad, “An Inner product space approach
to image coding by contractive transformations,” /EEE International
Conference on Acoustics, Speech, and Signal Processing, Toronto, pp.
2773-2776, May 1991.

, “Reducing the complexity of a fractal-based image coder,”

Signal Processing VI: Theories and Applications, 1. Vandewalle, R.

91

308

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 4, NO. 3, JUNE 1994

Boite, M. Moonen and A. Qosterlinck (eds.), Elsevier Science Publishers
B.V., pp. 1353-1356, 1992.

S. Lepsoy, G. Dien and T. Ramstad, “Attractor image compression with
a fast non-iterative decoding algorithm,” IEEE International Conference
on Acoustics, Speech, and Signal Processing, Minneapolis, vol. 5, pp.
337-340, Apr. 1993.

M. Gharavi-Alkhansari and T. S. Huang, “A Fractal-based image block
coding algorithm,”JEEE International Conference on Acoustics, Speech,
and Signal Processing, Minneapolis, vol. 5, pp. 345-348, Apr. 1993.
G. Vines and M. H. Hayes III, “Adaptive IFS image coding with
proximity maps,” IEEE International Conference on Acoustics, Speech,
and Signal Processing, Minneapolis, vol. 5, pp. 349-352, Apr. 1993.
L. Thomas and F. Deravi, “Pruning of the transform space in block-
based fractal image compression,” IEEE International Conference on
Acoustics, Speech, and Signal Processing, Minneapolis, vol. 5, pp.
341-344, Apr. 1993.

D. M. Munro, “A hybrid fractal transform,” IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, Minneapolis, vol. 5,
pp. 169-172, Apr. 1993.

Y. Fisher, “A Discussion of fractal image compression,” Appendix A
in Chaos and Fractals: New Frontier of Science, H. Peitgen, H. Jurgens
and D. Saupe (eds.), New York: Springer-Verlag, pp. 903-919, 1992.

, “Fractal image compression,” SIGGRAPH 1992 Course Notes.
Y. Fisher, E. W. Jacobs and R. D. Boss, “Fractal Image Compression
Using Iterated Transforms,” in Image and Text Compression, J. A. Storer
(ed.), Dordrecht, Netherlands: Kluwer, pp. 35-61, Dec. 1992.

E. W. Jacobs, Y. Fisher and R. D. Boss, “Image Compression: A study of
the iterated transform method,” Signal Processing, vol. 29, pp. 251-263,
Dec. 1992.

D. Le Gall, “MPEG: a video compression standard for multimedia
applications,” Communications of the ACM, vol. 34, pp. 46-58, 1991.

Michael Lazar received a B.Sc. in Computer En-
gineering from the University of Alberta in 1984
and an M.Sc. in Electrical Engineering from the
University of Alberta in 1988.

Currently, he is working toward his Ph.D. in
Electrical Engineering at the University of Calgary,
Canada. He has also worked for Bell Northern
Research from 1985-1986 and 1988-1990. His re-
search interests include image and video processing,
multiresolution analysis and the applications of frac-
tals within engineering.

Leonard T. Bruten (M’71-SM’80-F’81) is a
Professor of Electrical and Computer Engineering
at The University of Calgary, Calgary, Alberta,
Canada.

His research interests are in the areas of analog
and digital signal processing. He is particularly
interested in the design and implementation of
microelectronic digital filters and the applications
of multidimensional circuit and systems theory to
digital image processing.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

