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is obtained with increasing 7. This is because the noise caused by
larger # can be suppressed by using p < 2. Fig. 5 shows the BER
performances for the two structures as a function of SNR. It can be
seen that better BER performance can be achieved by using smaller
p and this is especially true for the PPS structure.

IV. CONCLUSION

The I, norm back propagation algorithm for adaptive equalization,
taking account of possible numerical problem encountered when p <
1, is analyzed. Two methods are proposed to overcome the numerical
problem. Simulation results indicate that simultaneous improvement
in convergence rate and BER performance can be obtained by using
p < 2
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Closed-Form Impulse Responses of
Discrete-Domain Multidimensional Filters

Dave Jin and L. T. Bruton

Abstract— 1t is known that useful two-dimensional (2-D) and three-
dimensional (3-D) discrete-domain recursive transfer functions may be
designed by applying the MD bilinear transformation to the continuous-
domain transfer functions of prototype MD inductance-resistance net-
works. Closed-form expressions are derived for the impulse responses of
these 2- and 3-D discrete-domain filters.

I. INTRODUCTION

Prototype three-dimensional (3-D) inductance-resistance contin-
uous-domain networks, having Laplace transform transfer functions
of the form

R
Ti(81,82,83) = R+ 5Ly +s2Ly + s3Ly’ M

have been shown [1] to be useful for the design of 3-D discrete-
domain recursive filter transfer functions by applying the triple
bilinear transformation to (1). In particular, such filters can be used
to selectively enhance 3-D linear trajectory (LT) and 3-D plane wave
(PW) space-time signals.

The demonstrated usefulness of such filters in image processing has
motivated this work, in which closed-form expressions are derived
for the impulse responses, h(n) (where the boldface n represents the
integer m-tuple n1,na, ..., nm,), of both the 2-D and 3-D LT filters.

Closed-form expressions for h(n) are not generally available for
MD filters, primarily because of the lack of a Fundamental Theorem
of Algebra for multivariate polynomials’. Therefore, MD transfer
functions cannot be expanded by the method of partial fraction
expansion as in the 1-D case. However, closed-form expressions
are available [2] for purely first-order m-D z-transform transfer
functions. This result has led to a deeper understanding of the
2-D stability of transfer functions obtained via the 2-D bilinear
transformation [3].

The availability of algebraic expressions for h(n) facilitates further
research on the input-output properties of LT and PW 3-D recursive
filters, including issues relating to MD convolution and MD stability.
The transfer functions considered here are more general than in [2].
In this brief, we present the derivation for the impulse response of
the 2-D LT filter using the method of residues. The extension to the
3-D case is straightforward but very lengthy, and is given in [4].
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II. REVIEW OF THE MD INVERSE z-TRANSFORM

The MD inverse z-transform is given as

h(n) = Z7[H(2)]

() A ofme

Xz gre L rm g dzy - -
(27”) f jf f F(z)dz1dzg - 2
where
F(z)= H(z)z0" " 25 oy ™ ©)

and each integral is evaluated on a closed counterclockwise contour
which lies within the region of convergence (ROC) of H(z) and
encircles the origin. In (2), if H(z) represents the transfer function
of the filter, then h(n) is the impulse response of the filter.

The inverse z-transform technique described here involves the
evaluation of multiple contour integrals. An advantage of such an
approach is that the derivation involves only one z variable at a time.
Therefore, it is necessary to factor the m-D polynomials F(z) in (3)
into 1-D polynomials in z;, whose coefficients themselves are MD
polynomials in zi,z0,...,2i—1, 2i41,..., 2m. We denote an m-D
polynomial in this form by F[z1,22,...,2zi—1, Zi41,. -, 2m](2:).

Determination of the inverse MD z-transform directly by contour
integration as in (2) is extremely difficult in almost all cases.
However, the contour integrals can be evaluated by application
of Cauchy’s Residue Theorem. This method involves evaluating
residues at each of the poles inside each contour of integration c,,
in (2). The resulting residues are then added together to evaluate the
contour integral. For an m-D transfer function, the impulse response
is obtained after m successive applications of Cauchy’s Residue
Theorem. Rather than integrating, the problem is reduced to evaluat-
ing residues, which require closed-form derivative expressions. The
required closed-form derivative expressions can be obtained either
intuitively as in [4], or by Leibniz’s Theorem.

Since the ROC of (4) with respect to each z,,, is an annulus extending
outward from the pole farthest from the origin, each contour of
integration, cn,, encircles all poles with respect to z,.

In order to derive the inverse z-transform of (4), we first rewrite
(4) in terms of the zeros of the denominator polynomial with respect
to the z1. Thus the integrand in the inverse z-transform definition of
(2) is (see (5) at the bottom of the page).

The above function has two poles (with respect to z;). The term
277" in the numerator of (5) is a pole term only in the special
case of n; = 0; that is, a pole exists at z; = p; = 0 iff n; = 0
and n2 > 0. Note the condition on n is included since the impulse
response is causal (in two dimensions).

The second in (5 exists at 23 = p; = -—
—Li-LotRiza(— L’+R) (for ny > 0,np > 0). Evaluating

(L1— L2+R+12(L1+L2+R))
the residues at these two first order poles gives, respectively,

G1(n1, 22)

= Res[F[22](21) at z1 = p1]
Rz22 7 (142,)

_ | Conen ()

0, otherwise

ny =0,n220

(6

and (7) shown at the bottom of the page.

According to the Residue Theorem, the sum of the residues in
(6) and (7) gives the contour integral of F[z3](z1) with respect to
z1. Applying the Residue Theorem a second time on each of the
above two residues yields the contour integral with respect to zo
and therefore yields the impulse response. Note that the functions
G1(n1, z2) and G2(n1, z2) are nonzero for specific values of n; and
nz. These conditions on G1(n1, z2) and Gz2(ni1, z2) also apply to
the residues obtained from subsequent applications of the Residue
Theorem.

In (6), the numerator term 252" is a pole for the special case of

nz = 0, and so a first order pole exists at zz = ps = 0 if ny = 0
(from the conditions stated in (6)) and no = 0. Applying the Residue
Theorem to (6) gives

hl(nl,ng) = Res[G1 (n1, 22) at 22 = p3]

R
oy Jowy - 1) n1=0,n2=0
II. THE CLOSED-FORM IMPULSE RESPONSE = { b OL,”R otherwise ®
EXPRESSION FOR THE DISCRETE-DOMAIN 2-D LT FILTER L —LatR
The 2-D LT filter transfer function may be obtained by simply ?bservtillglt ©) a.lso;xas a first order P?le Atz =Pa = -7k
setting L3 to zero in (1), and the discrete-domain transfer function [°f ™1 = 0 and nz > 0 (same conditions as for (6)).
is obtained from double bilinear transformation. The 2-D discrete- ha(ni,n2) = Res[G1(n1, z2) at zz = p3]
domain LT filter transfer function is 2LyR(L;+Ly—R)™2 -} =0 >0
= { (—LY1+L20+R)"‘2+1 » M= ’n? =Y.
Hy(z, 2-2) — , otherwise o
R(Zl + 1)(22 + 1)
Li(z24+1)(z1 — 1)+ La(z1 + 1)(z2 = 1) + R(z1 + 1)(z2 + 1) Following a similar approach as above for G1(n1, 22), G2(n1, 22)
(4) in (7) possesses poles at the following locations: 2o = ps =
R nyj—1 + 1 ng—1 + 1
Flz](z1) = TS Lx—(;:+R+z)2(—L1+L2+R) )
(L1 = Lo+ Rt z2(Lo+ L2 + R))( T —Ly R+ (LitlatR) T Zl)
AR LR (B )
— n » 1 20U,n2 2
Ga(n1, z2) = Res[Flz](21) at z; = p2] = (L1+L2+R)(€11TIE§$§+22) 1+ @)

0, otherwise
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hs(n1,n2) = Res|Ga(n1, 22) at zo = p7] = J +2300

(2L R (Li—L—R)"1~}

nil ? (Ly+Ly+R)™M1+1

x[z:zzll (,:("l_,)nAm i~1pgi- 1(Hn1 1 ) (H;‘Zn:_, ))
(—L—"' Am2=iBis I(H'.‘l.lj) e

il(ny—2)!

J=1 Jj=ng— l+1]

+30 (zl(nl ,)lAnZ Hipi- 1( r»'i-_lj) ;21—21 ited ], n1 2 0,n2 >0

J=t
L 0, otherwise

(12)

— 2R iffny = 0,ny > 0; 22 = ps = 0 iff n > O,m2 = 0;  where

and z; = p7 E—%i;—fgi—giffnl > 0,ng > 0.

Applying the Residue Theorem to first order poles ps and pe yield, A Li-L:+R 6
respectively, = (‘m) (16)
ka(ni,n2) = Res[G2(ni, 22) at z2 = ps) B= ( 4L L, ) .
L R(LyALy-R)"2 it L+ R -L: B an

n =0,n2 20

(—Li+Lz+R)"2 %1

0, otherwise
(10)
and
ha(ni,n2) = Res[Ga(n1, 22) at z2 = pe)
2L R(Ly+La—R)"17! _
2L1(—1132+212)nx)+1 , n120,n2=0
0, otherwise
an

Finally, (7) has a pole at z2 = pr which has a multiplicity of
(n1 + 1). After some algebraic manipulation, it can be shown that
(see (12) at the top of the page) where

Li—-L+R
_(_ 1
A ( L]+L2+R) (13)
4L, Ly
= . 14
((L1+L2+R)(L1—L2—R)) (14

Finally, adding together hi(ni,n2) through hs(ni,nz) above
yields the closed-form impulse response expression

h(nlanZ)

R
= &
“Li— L. + go(m)(n2)

2L R(Ly + Ly — )™ !

(Ly — Ly + R)m1+1
2L R (L, — L - R)™™!
(L1 + Lz + R)m+!

TL1!

ny ny—1 ng—1
" [; ("(1:—1)"4"2 e I(JI;I j)(jl-—a[—ij))
+2Z ( nl ;1)1 "2—iBi_1 (j:i J) (j:ngi+lj))

ng—i+l pi—1
+Z( nl‘lA B (

na+1
(L)
J=no—i+2

+ 6(112)

+

< 2
Il |
-

.
N——

This closed-form expression is the required result.

IV. CONCLUSION

A closed-form expression for the impulse responses of the discrete-
domain 2-D LT filter has been derived. The derivation can be
extended to filters of higher order and dimension. However, the
number of poles, and therefore the required number of residues,
increases with the order of the filter. A large number of dimensions
means that the expressions become increasingly complex with each
application of Cauchy’s Residue Theorem.

Impulse response expressions are useful in the stability analysis
of MD filters [3], [5], and in the design of filters through numerical
optimization [6]. Further, the impulse responses of 3-D PW filters are
easily obtained by convolving the impulse responses of two 3-D LT
filters. The method for deriving closed-form expressions for impulse
responses of 2- and 3-D LT filters may also be extended to other
MD transfer functions, and to the determination of MD residues in
general.
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