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Abstract—In this paper, we present an image understanding
system using fuzzy sets and fuzzy measures. This system is based
on a symbolic object-oriented image interpretation system. We
apply a simple, powerful three-dimensional (3-D) recursive filter
to tracking moving objects in a dynamic image sequence. This
filter has a time-varying 3-D frequency-planar passband that
is adapted in a feedback system to automatically track moving
objects. However, as objects in the image sequence are not
well-defined and are engaged in dynamic activities, their shapes
and trajectories in most cases can be described only vaguely. In
order to handle these uncertainties, we use fuzzy measures to
capture subtle variations and manage the uncertainties involved.
This enables us to develop an image understanding system that
produces a very natural output. We demonstrate the effectiveness
of our system with complex real traffic scenes.

I. INTRODUCTION

I N scene understanding and image analysis, we often face
many uncertain factors. Traditionally uncertainty is handled

by probabilistic methods such as Bayesian networks [28] and
the Dempster–Shafer (D–S) paradigm [17], [30]. However,
these methods are based on the occurrence of crisp events, and
in many cases are unable to cope with vagueness and subtle
changes. Furthermore, such methods are not suitable for natural
linguistic descriptions.

In image analysis tasks, we are dealing with two-dimensional
(2-D) data that has a complex connection between the pixel-
level description and the object-level (and causal level) descrip-
tion, especially when we are concerned with temporal image se-
quences. Such descriptive complexities lead to uncertainty that
should be handled with uncertainty measures by which alterna-
tive hypotheses can be judged.
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For instance, given an isolated low-level region (blob), it is
desirable from the high-level perspective to hypothesize what
object it could be. Each hypothesis requires a measure of fit.
In a traffic scene, a blob could be a motorcycle or a pedestrian
depending on (bottom-up) its shape, and (top-down) its behav-
iors. The image understanding system relies on mechanisms that
trade off between bottom-up “goodness-of-fit” and top-down
“expected behavior”—the latter being adherence to the causal
rules applied to the system.

There has been little work on applying uncertainty measures
to high-level vision tasks, particularly the analysis and inter-
pretation of dynamic object interaction in image sequences [6].
Recently, Huanget al. [19] and Buxton and Gong [11] used a
Bayesian belief network and inference engine [2] in sequences
of highway traffic scenes to produce high-level concepts like
“car changing lane” and “car stalled.” In general, belief net-
works propagate values around the network as vectors between
events [28]. Belief networks are regarded as bottom-up systems,
which have a lot in common with the connectionist paradigm.
One problem with Bayesian inference is that each node, con-
sisting of a set of exhaustive and mutually exclusive states, must
have a set ofa priori conditional probabilities, which are almost
impossible obtain in real vision applications. In addition, uncer-
tainties in such cases are not usually statistical [32].

To handle uncertainty, Bezdeket al.[6] presented several ex-
amples of fuzzy models using fuzzy certainty factors to eval-
uate matching degrees for high-level concepts, for instance,sky,
field, androad. It should also be noted that such techniques pro-
duce a 2-D segmentation of the scene rather than a high-level
interpretation.

Despite the fact that interpretation and understanding of
traffic sequence have important applications inintelligent
highwayssystems, cooperative autonomous robots, and in-
telligent surveillance systems, very few systems have been
developed. Kolleret al. developed a system that generates
verbs to characterize the motion of the object (i.e., vehicles)
[23]. Gerber and Nagel proposed a simple traffic interpretation
system that is based on detected vehicle trajectories [18].
Although their systems can apparently give some simple verbal
descriptions, such as “drove forward” and “turned left,” they
lack the ability to understand the motion and interprerate the
interaction between moving objects. In addition to detecting
and tracking the motion, understanding and interpretation of
vehicle motion and interaction require acognitive structure
to combine motion trajectories with rules and to generate
symbolic (e.g., linguistic) interpretation.
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In this paper, we are interested in automated interpretation
of dynamic activities of objects in image sequences in uncer-
tain environments. Fig. 1 shows the basic structure of the system
which consists of two major subsystems: 1) object tracking and
2) image sequence interpretation. We apply the 3-D recursive
filter to tracking moving objects, which produces a robust es-
timate of the instantaneous 3-D space–time velocity vector of
the tracked object, which is then used as a training sample for a
conventional multilayer perceptron (MLP) neural network [20].
MLP identifies and categorizes useful motion and positional
characteristics of the objects in the image sequence.

In the image interpretation process, uncertainties present
in the trajectories and moving objects (vehicles) are handled
by fuzzy belief measures. We incorporate fuzzy membership
functions and belief measures in our symbolic object-oriented
picture interpretation (SOO-PIN) system [14]–[16], which
is based on a network-of-frames approach. This results in
fuzzy SOO-PIN, which uses fuzzy membership functions to
convey bottom-up goodness-of-fit for object features. Based
on object belief measures and causality, we develop a set of
rules for top-down interpretation. Fuzzy logic is ideally suited
to this problem as it deals well with uncertainty in the data,
and vagueness in the concepts, and it maps onto the high-level
output description language in a natural manner. Abnormal and
uncertain events can be handledgracefully, resulting in robust
system performance [5], [24]. To demonstrate the effectiveness
of our system we describe in detail a specific application to
traffic scene interpretation.

Section II presents the general architecture of the SOO-PIN
system for traffic interpretation that uses fuzzy sets and belief
measures for handling the uncertainties in objects and trajecto-
ries; and the vagueness in descriptions. Section III describes the
motion tracking algorithm used in traffic scene interpretation. In
Section IV, we discuss the type of uncertainties, “object-ness”
in terms of fuzzy membership functions, and fuzzy measures
for dealing with trajectory assignment. Section V shows some
results from our traffic implementation, which utilizes all the
techniques described earlier.

II. NETWORKED ARCHITECTURE FORDYNAMIC SCENE

UNDERSTANDING

Research on high-level interpretation of dynamic object in-
teractions in image sequences has received little attention de-
spite the fact that such a vision system has significant and di-
verse applications in many areas; for instance, vision guided au-
tonomous vehicles, automated video editing, dynamic biomed-
ical image analysis, and intelligent image information access in
multimedia.

A recent high-level dynamic image understanding system on
SOO-PIN is discussed in [14]–[16]. The SOO-PIN architecture
is based on the idea that high-level interpretation is best
performed using a network of independent “processes” (called
concept-frames), each of which is concerned with a specific
aspect of the interpretation, and all of which communicate via
message passing. This architecture embodies both data-driven
and knowledge-based control, where automatic ( and

) messages represent the data-driven mode, and on-de-
mand ( ) messages represent the knowledge-based

Fig. 1. Dynamic image sequence analysis system consists of two major
subsystems. The input video is first processed to generate object trajectories,
which is then followed by the image interpretation subsystem that uses
a networked-frames architecture for motion understanding and use fuzzy
measures for handling uncertainties in the trajectories. Finally, the system
produces a text report.

mode (these messages are prompted from the exploration of
higher level hypotheses). Using these two modes together
avoids the large search space resulting from using either alone.
For instance, knowledge-based control can entail exhaustive
depth-first search as the system begins searching at the top
nodes of the search tree and must check all nodes down to the
data level, usually with failure-driven backtracking. On the
other hand, data-driven search modes entail combining all data
in all possible patterns in order to explore higher nodes in the
search tree, and as Tsotsos [33] has pointed out, this method
is NP-complete. Our conjecture that mixing top-down and
bottom-up modes is more efficient than either alone, is backed
up in the area of linguistic parsing by Allen [3], who gives
mixed-mode chart parsing as an example. For image analysis
we use fuzzy belief measures to handle uncertainties present
in trajectories and moving objects (e.g., vehicles). Our system
uses both fuzzy sets and fuzzy measures to model bottom-up
goodness-of-fit for object features.

The traffic scene interpretation problem is rich enough to
require an interesting network-of-frames, and yet constrained
enough to be tractable. Real traffic scenes are interesting be-
cause they can be understood from single images, which require
very complicated knowledge bases of possible dynamic behav-
iors of objects in the scene. However, imagesequencesand our
networked architecture make it possible to obtain fruitful in-
terpretations with a very simple knowledge base, namely, the
traffic rules. The interactions of cars are a language in which
the intentionalityof the driver can be expressed, without much
contamination from more direct driver-to-driver communica-
tion; that is, there is very little communication between drivers
that is not expressible through the movements of their cars. The
interactions, however, are completely visible to our system (an
exception to this is the use of turn indicators). Consequently, it
is possible from observing the cars to interpret the drivers’ states
of mindvis a vistheir views on what the other cars are doing.

Fig. 2 shows a typical frame from an intersection sequence
taken in downtown Melbourne, which has two sets of electric
tram tracks in the middle (grey) area of the image. Bearing in
mind that cars move forward on the left side of the road, try to
determine the projected tracks of the eight vehicles in Fig. 2.
You can do it pretty easily—this supports our contention that
simple, intuitive rules can be used to analyze traffic scenarios.

In the traffic scenario we describe an application which col-
lects temporal sequences of images of road intersections, inter-
prets vehicle activities (e.g., vehicle A is turning right from the
west), and produces legal analyses1 of the scene such as

1According to Australian traffic rules, traffic travels on the left.
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Fig. 2. Typical Australian traffic scene processed by the SOO-PIN system.

• whether the car is on the wrong side of road or intersection,
• when a car should give way to another. For instance

— give way to right at intersection;
— give way to oncoming when turning right;
— at T-intersections, cars in ending road give way to those

on through road;
— at traffic lights or give way signs.
• traffic jams (i.e., give-way deadlocks).

The concepts above have been incorporated in the net-
work-of-frames shown in Fig. 3, consisting of the following
concept-frames.

• The primitive concept-frames , , , and
correspond to the objects either found by low-level

processing (see Section IV) or given (e.g., intersection,
T-intersection and road are constant). The and

concept-frames calculate car velocities and
determine whether they are likely to collide.

• Turn concept-frames, , , and
determine the containment of cars in road structures (roads
and intersections), for instance, “car A is in intersection
B.”

• Give-way concept-frames check to see if any pairs of ve-
hicles are in a give-way relationship. Output from the net-
work is generated by the give-way concept-frames.

Some of the major uncertainties are:

1) the presence of a car indicated by segmented blob;
2) the concept of velocity, such asslowingdown,speeding,

fastapproaching, etc.;
3) car’s trajectories, i.e., whether it is turning left, right, or

going straight ahead.

All these events are characterized by vague information and are
difficult to handle with traditional approaches; this is why we
incorporate fuzzy logic in our SOO-PIN system.

III. T RACKING OF DYNAMIC OBJECTS

Tracking moving objects has been a research topic in com-
puter vision for more than two decades. Many techniques have

been developed [1], [4].2 Bradshawet al.proposed a system for
computing 3-D motion trajectories. Their system uses an active
camera platform and the Kalman filter for estimating trajectories
[7]. However, this system is sensitive to camera calibration and
requires a complicated camera setup for active vision. In [37],
Zheng and Tsuiji presented an image projection technique with
a scanning slit camera that generates dynamic, spatial-temporal
images. The system relies on prior knowledge of object motion
types, e.g., linear or pure rotation. Whereas their technique may
be useful in dynamic image compression, it is not effective in
our application.

Bruton and Bartley [9] have shown that 3-D recursive digital
linear-trajectory (LT) filters may be used to selectively track
the motion of objects in digital image sequences. Their method
adaptively steers the 3-D frequency-planar passband of the filter
to track the slowly time-varying, 3-D frequency-planar energy
density function of the moving object in space–time. This
tracking method is especially immune to additive noise and can
successfully discriminate between objects that have motions
that differ only slightly from that of the object being tracked.
We use this algorithm to compute the motions and trajectories
of cars in the traffic image sequences in our examples. Although
indeed there are many motion tracking algorithms available,
the 3-D motion tracking filter has the following advantages.

• Simplicity: The 3-D difference equation is just first-order
in each of the spatial and temporal variables. Real-time
(video-rate) implementations have been achieved in both
dedicated hardware (as reported in [25]) and on high-
speed general-purpose DSP processors, such as the Texas
Instruments TMS320C80 Multimedia Video Processor.

• Robustness: Objects can be tracked and enhanced both in
the presence of heavy noise contamination and in the pres-
ence of other, possibly occluding, objects.

To identify and categorize motion and positional characteris-
tics of the objects in the image sequence, we use a conventional
MLP neural network that is trained by the velocity vector gen-
erated by the tracking algorithm [20].

A. 3-D Linear Trajectory Signals

In this section, we briefly describe the fundamental class of
3-D linear trajectory (LT) signals and the simple 3-D recursive
filter algorithms that are used to enhance LT signals.

Many important 3-D filtering problems associated with the
enhancement of digitized image sequences involve 3-D signals
that can be characterized in a continuous space–time domain

. An LT signal is defined in [10]
as belonging to the class of 3-D signals for which there exists a
direction along which is constant along all lines par-
allel to , as illustrated in Fig. 4(a). When presented as a tem-
poral succession of frames in, such signals have the property
that they move with constant spatial velocity in the plane
[10].

The 3-D LT signal in Fig. 4(a) has a corresponding energy
density spectrum that exists entirely on a signal plane passing
through the origin in , as shown in

2Interested readers may find the survey paper [13] useful.
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Fig. 3. Traffic scenario network-of-frames. The arrows refer to check or create messages; inquiry and update messages are not shown [16].inXn refers to
“intersection,”tInXn to “T-intersection,”carInXn to the concept of a car in an intersection,carTInXn refers to a car in a T-intersection, andcarRoad to a car
in a road.

Fig. 4. Three-dimensional LT signals.

Fig. 4(b). The normal to thesignal planehas the same direc-
tion in as the direction of the LT signal in [10].

We can generate corresponding discrete-domain LT temporal
image sequences, , , by
sampling on uniform time intervals. In [10] and [36], we
developed a simple, robust 3-D recursive filter algorithm for the
enhancement of 3-D digitized LT image sequences.

B. Adaptive 3-D Recursive Tracking Filter

In most temporal image sequences, objects do not proceed
along linear trajectories, but instead exhibit temporally-smooth
motion along curved trajectories in space–time. However, it is
convenient to represent curved-trajectory signals in
space withpiecewiselinear trajectory signals in space
which depicts a time sequence of linear segments. The enhance-
ment of piecewise linear trajectory signals is then carried out by
using anadaptive3-D LT filter whose resonant plane is oriented
in every frame to selectively enhance an LT signal having the
direction of the segment .

Consider the output of the 3-D LT filter at frame, and let the
position of the object be centered at the pixel position
and similarly at in frame . We define the
instantaneous velocity vector as, where

(1)

We use the adaptive 3-D filter system shown in Fig. 5. Fol-
lowing [9], we determine the position of the object at the output
of the 3-D LT filter in each frame by computing the intensity
centroid within an object window, as shown in Fig. 6. For a
window size of , whose lower left corner is located at
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Fig. 5. Three-dimensional system for tracking a moving object and obtaining velocity estimates.

the pixel address , the centroid of the object ,
is given by

(2a)

(2b)

where is the output intensity value in
image frame , and

(3)

is the total output in frameand used as the normalizing factor.
The object’s centroid is then used as the input to

the feedback portion of the system in Fig. 5, where the instan-
taneous time-varying velocity estimateis determined. Then,

is filtered to get using two second-order one-dimensional
(1-D) lowpass recursive filters to smooth the frame-to-frame
discontinuities that occur in the velocity estimates. Finally,
based on the smoothed velocity estimate , we use
the method in [10] to determine the time-varying coefficients

of the 3-D LT filter for each frame.
We will use the smoothed velocity estimateto classify the
trajectory of the object, as described in the following section.

C. Trajectory Classification of the Passband Tracked Object

To classify the trajectory of a passband object we use a con-
ventional MLP network which is fed by a time-delay neural net-
work (TDNN) [20]. The TDNN consists of a tapped delay line

Fig. 6. Intensity centroid of the passband LT object in framei.

of length having unity tap weights and is used to collect a
time series of smoothed velocity estimates . Velocity
estimates are input to the TDNN when the 3-D tracking system
has captured a particular object. After estimates have been
collected, the TDNN output vector, which represents thestatic
velocity profileof the object, is used as the input to the MLP.

The MLP is a conventional three-layer network:

1) input layer;
2) hidden layer;
3) output layer.

There are inputs for the frames used in the estimation
process. The hidden layer hasnodes. There are outputs:
Each of the outputs corresponds to a particular velocity pro-
file that the network has been trained to recognize. Training of
the network is achieved by applying a matrix ofsuch velocity
profiles in batch to the network and using the conventional back-
propagation training algorithm [20].
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D. Classification of Trajectories

The tracking and classification algorithms are used to classify
the trajectories of vehicles passing through an intersection. The
system runs on images recorded on videotape from fixed cam-
eras mounted above city intersections in Melbourne (Fig. 2),
and the images were digitized using an Abekas Digital Video
system (in , 24-bit RGB format). A 10-s video se-
quence is obtained that contains vehicles moving on four dis-
tinct trajectories. The trajectories correspond to vehicles that
pass directly through the intersection at constant speed and ve-
hicles that begin left and right turns, pausing to yield to on-
coming traffic. These four trajectories are shown in Fig. 7 and
have been assigned the numeric classifications 0–3. A 100-input
three-layer MLP is trained to classify the velocity profiles of
each of these four trajectories.

The detection of vehicles for tracking and classification is
automated by placing a number of fixedsensor windowson each
lane of traffic where vehicles enter the intersection, as shown in
Fig. 8. In each sensor window, we employ a fixed 3-D LT filter
having a passband that is tuned to enhance vehicles moving in
the direction and average speed of traffic for that lane.

The selectivity of the passband is less than that used in the
tracking algorithm so that vehicles that are slightly slower or
faster than the average speed are still transmitted by the filter.
In Fig. 6, the total output intensity in (3) for each sensor
window is determined and monitored in each frame. Once
has exceeded a threshold in a particular window, the vehicle
in the window becomes a candidate for tracking. As shown in
Fig. 8, two such candidates have been identified, as indicated by
the brighter window borders and cross-hairs over each vehicle’s
centroid.

The overall system of vehicle detection, tracking and
classification is shown at work in Fig. 9. Each vehicle that is
being tracked is indicated by its surrounding rectangular object
window containing the LT-filtered output image and cross-hairs
over the centroid. For vehicles that have been tracked for 50
frames, the 50 velocity estimates are input to the
MLP for classification. The resulting numeric classification is
then superimposed on the roof of the vehicle, as shown for two
vehicles in Fig. 9, which are classified as “0” and “1.”

For training the MLP, we used 50 consecutive velocity esti-
mates of the training vehicles. To generate the training samples,
we manually picked one vehicle that appeared to best represent
one of the four trajectories we wanted to classify. Training was
performed on velocity estimates produced by the 3-D tracking
filter for each of the training vehicles and was done onceoff-line.
However, because there were not enough frames of the training
vehicles in the original sequence, we had to interpolate (with an
up-sampling ratio of 1 : 4) the frames of the training vehicles.
The system achieved 100% correct trajectory classification for
the given image sequence which included the 50 frames that
were used for training. The detected cars and classified trajec-
tories were then used in the subsequent high-level interpretation.

IV. V EHICLE ATTRIBUTES

As cars in the traffic scene are detected in sensor windows de-
scribed above, they are represented as blobs with sizes defined

Fig. 7. Vehicle trajectory classifications.

Fig. 8. Vehicle detection using sensor windows.

Fig. 9. Vehicle tracking and classification.

as theirpixel counts. Each blob is assigned major and minor



LIU et al.: DYNAMIC IMAGE SEQUENCE ANALYSIS USING FUZZY MEASURES 563

axes (orientations). Blob sizes, orientations, and trajectories, for
each image and region, are stored in a database together with car
identities and frame numbers. The intersection and road coordi-
nates are also stored in this database and are accessed by the
high-level network-of-frames, as shown in Fig. 10.

A. “Object-ness” for Car Description

Cars are found by isolating segments (blobs) which are output
by a “change” detector. Consequently, a car’s identity varies
considerably. Such variations cannot be easily modeled statis-
tically. A natural and effective way to handle the uncertainty
about vehicle identity is to use fuzzy membership functions to
define degrees of “car-ness” in terms ofrectangularity, and area
of the blob.

The membership function for rectangularity is based on de-
termining the axis of symmetry of the blob. Specifically, we use
the ratio of the minimum to maximum eigenvalues of the ma-
trix that is used to determine the principle axis of the segment
[29]. A ratio of indicates that the segment is squarish, and
a ratio of indicates a linear blob. The membership func-
tion for blob rectangularity is shown in Fig. 11. Most
cars are rectangles with an aspect ratio of about 2 : 1, so this
degree of rectangularity is given fuzzy membership of 1. It is
possible for cars to have rectangularity of 1, so these are given
a membership of 0.5.

Fig. 12 shows the membership function that repre-
sents the extent to which a blob belongs to the set of cars. The
input measurement is blob area total pixel count , and the
value determines the match between blob area and car
area. The parameter when the blob has no area, and
for a blob with an area between 2000 and 3000 pixels. The mem-
bership drops down gradually and is fixed at 0.6 6000
pixels, for larger objects.

The membership values of a potential car in these two fuzzy
sets are combined with the min operator because the segment’s
“car-ness” depends upon the segment having both an appro-
priate area and rectangularity (i.e., conjunction). More formally,
let denote a detected blob with ratio and area . We de-
fine

(4a)

The minimum is used here, but more generally, any T-norm [22]
can be used to aggregate these two pieces of evidences

(4b)

The confidence (membership) value is then conveyed
through the network as a parameter attached to each blob.

One problem with this scheme is that the areameasured
in pixels depends upon the distance between the road and the
camera, and its focal length. Ideally, normalization ofshould
take place before finding . However, in the experiments
reported here, these factors do not vary much, so we have chosen

reasonably flat. This observation also applies to rectan-
gularity when the view is oblique, in which case an affine trans-
formation is required to restore the apparent view to the vertical.
However, in our system the view has to be close to the vertical
to avoid vehicle occlusion, so problems with rectangularity are

Fig. 10. Overall processing structure, with three images on the left processed
by the low-level system. The network-of-frames generates the interpretations.

Fig. 11. Fuzzy set associated with car rectangularity.

Fig. 12. Fuzzy set associated with car area, measured in pixels.

also avoided. A more sophisticated vision system based on, for
instance, model-based object recognition, would have to over-
come the need for vertical views and account for area normal-
ization.

B. Computing Car Velocities

In image sequences with many dynamic objects, measuring
velocity generally involves the correspondence problem, that
is, finding segments in two or more images in the sequence
that are thesameobject. Although our tracking algorithm
and MLP are able to track and classify trajectories with very
high accuracy for images with multiple moving objects we
still have a problem of consistent trajectory assignment—that
is, we must make sure that Car A’s trajectory will not be
assigned to Car B throughout the image sequence. Fortunately,
we can impose some constraints on vehicle movements in
the matching process. Matching has to take uncertainties into
consideration. The system must choose thebestmatch from
the possible matches. Fuzzy sets provide an ideal mechanism
for dealing with such uncertainties because the dynamical
constraints (in our case involving the inertia of cars) imposed
on possible matches are not inherently statistical, but rather,
express concepts like “degree of fit to possible trajectory.” The
system has to deal with ambiguities resulting from

• objects moving in close proximity to each other;
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• objects moving in parallel;
• objects moving along crossing trajectories.

The system described below is able to disambiguate these
situations through dynamical constraints, each constraint pro-
viding a source of evidence for that trajectory.

Trajectory matching is based on the computed centroids and
orientations of the blobs (cars) in every three frames. The middle
frame is called themaster frame, and each car found in this
frame is compared with cars in the preceding and succeeding
frames. A pairing is made if the computed velocity required to
move the car from a frame to its successor is within specified
bounds, and if the velocity is consistent with the orientations
of the two blobs as determined from their rectangularity. The
set of possible pairings from the previous to middle frame is
compared with that from the middle to successor frame, and the
pair of pairs with the highest confidence value is chosen as the
most likely trajectory of the car.

What confidence value can we use for the match between two
pairings of cars in three frames? Frames are about one-third of
a second apart, for the pair of frame at timesand we have

• the apparent velocity ;
• the rotation of the principle axis .

From the velocity and rotation data from each potential trajec-
tory triple we construct six measures of howgoodor believable
the trajectory is. For instance, given the momentum and time
constraints, it is unlikely that in the car can dramatically change
its heading in the third frame (Fig. 16 graphically illustrates
these two constraints). Therefore, the problem of matching tra-
jectories to cars becomes that of assigning confidence to po-
tential trajectories of the cars. The six measures we use are then
treated as information sources [32], and are combined with their
estimatedimportancesusing (11).

C. Fuzzy Integrals

Image understanding often entails the need to combine in-
formation from several sources. This can be done in a number
of ways; for instance, using a Bayesian approach, D-S, or fuzzy
logic [6]. One technique that has enjoyed success in other vision
applications is the use of fuzzy measures. In this approach, the
information sources are given grades of compatibility, and their
evidence is weighted and combined accordingly. In this paper,
we follow the method proposed by Tahani and Keller [32].

In 1977, Sugeno [31] introduced a fuzzy integral and fuzzy
measure, and proposed a set of fuzzy measure axioms. In partic-
ular, Sugeno’s measure obeys the following properties. Let
be any set, let be the power set of , and let

. We call a fuzzy measure if

(5a)

if (5b)

if is monotonic, then

(5c)

When satisfies (6), it is called a-fuzzy measure, and we write
instead of

(6)

See [22] and [34] for more detailed discussions.
In practice, we must determine a good value forin (6) given

the value of the measure for the singletons in, i.e., a value
which is useful for this dynamic image understanding applica-
tion. Let , and let . The
values are called the fuzzy densities as-
sociated with , and are interpreted as the importance of the in-
dividual (singleton) information sources. Now, suppose ,
say, . is viewed as a set of information
sources, and the measure of is regarded as the im-
portance of that subset of sources for answering some question.
The measure of is [27]

(7)

For and , this can be rewritten as

(8)

The value of can be found from this expression since, from
the definition of fuzzy measure,

(9)

In [31], it is shown that there is a unique solution for this ex-
pression for and .

When is a -measure, the values of can be deter-
mined recursively as [32]

(10)

and (11)

There are a number of interpretations of the meaning of fuzzy
measures. We regard as the belief assignable to an object
regarding its membership in a class given the densities from
each of the sources. The fuzzy density (the importance of the
sources) can be derived from training data, or from subjective
evaluations by experts [32], [21].

To generate the six measures we need, we first calculate the
match between frame trajectory pairs for the following four
rates:

• average speed over three sequential image frames ();
• speed difference ( );
• difference between velocity rotation rate and principle

axis (orientation) rotation rate ( );
• rotation rate difference ( ).
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Fig. 13. Data flow for calculating input values for fuzzy processing.

The data flow diagram for these calculations is shown in
Fig. 13.

The centroid position and orientation of the cars in the three
frames are used to produce ( ,), ( ),

( ), and ( ). The last three mea-
sures are inverted by subtracting them from 1. This renders value
1 when there is certain evidence for the trajectory. The fuzzy
densities are obtained by trial and error. The set of densi-
ties that gave the best matching capability are

LowDiffOK

LowSpeedOK

NormSpeedOk

BadRotn

OutOB1

OutOB2

(12)

are the frames of discernment for sets of mem-
bership functions that describe linguistic values for each of the
four liguistic variables (see Figs. 14 and 15). When a 4-tuple
is evaluated, the resulting membership values are combined as
shown in (13a)–(13f) to produce values for the six measures.
The left-hand sides of (13a)–(13f) use a total of 13 values
extracted from the four membership functions represented by
Figs. 14 and 15 to make an evaluation

lowDiffSpeed lowDiffRotn lowDiffVelOr

LowDiffOK

(13a)

lowAvSpeed lowDiffSpeed lowDiffRotn

LowSpeedOK

(13b)

okDiffSpeed okDiffRotn okDiffVelOr

NormSpeedOK

(13c)

lowAvSpeed medDiffRotn

BadRotn (13d)

highDiffSpeed highAvSpeed highDiffRotn

OutOB1 (13e)

medAvSpeed highDiffVelOr

OutOB2 (13f)
Using (9), we obtain a -measure with . The

pair with the highest fuzzy measure of match is chosen as the
correct match, and is used to create a trajectory instance.

D. Velocity Examples

In order to demonstrate the effectiveness of thefuzzy mea-
sure, we generated the scenarios in Fig. 16, of which three are
abnormal.3

3Abnormal scenarios donot occur in actual traffic image sequences because
constraints make this physically impossible.
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Fig. 14. Fuzzy sets in the speed difference (�V ) frame of discernment. The sets arelowDiffSpeed, okDiffSpeed, andhighDiffSpeed. The fuzzy sets in
the frames of discernmentdiffRotn (�R) anddiffVelOr (�V O) are the same.

Fig. 15. Fuzzy sets in the average speed (AV) frame of discernment. The sets arelowAvSpeed, medAvSpeed, andhighAvSpeed.

Fig. 16. Diagram of four car trajectories.

In Fig. 16, various bad matches are demonstrated. The top
car is normal, the rest have a problem designed to provoke a
low confidence in the matching. Each car is shown in three suc-
cessive frames, where the frame number is encoded in the car
labels ascar car number frame number . Car c5 has an
unusually high acceleration, car c6 changes its rotation rate too
fast, and car c7 slides sideways. For comparison, the trajectory
of car c4 is normal. The output from a run for each of the cars is
presented in Tables I–IV. Notice that many of the membership

functions used on the left sides of (13a)–(13f) take zero values
for this input 4-tuple. The last column in each table shows the
evidence for each of the six hypotheses. The total confidence in
the match from (11) is displayed in the bottom right cell of each
table.

Let us have a close look at Tables I–IV to see how the con-
fidence values are computed. In the tables we list all the fuzzy
membership functions and their values that have been used in
(13a)–(13f) for computing the six measures. The total confi-
dence in match is calculated using (11). Table I is associated
with car c4 in Fig. 16 that has a normal movement. As ex-
pected, car c4 activated no low confidence values in the fuzzy
functions and produced the high fuzzy integral value of 0.81. In
Table II, car c5 has a high of 1.59, which activates the high-
DiffSpeed fuzzy set. This in turn activates the evidence source
outOB giving a low fuzzy integral value of 0.28.

Fig. 16 shows that car c6 has a highly abnormal movement;
it had a spin in frame c6_98, which gives a high and a
high , resulting in two outOBs and thus a low value 0.29.
The frame c7_98 in Fig. 16 shows that car c7 skidded, which
produced a high that in turn activated outOB1 resulting
in a low fuzzy integral value of 0.38.

E. Fuzzy Linguistic Hedges

When the car’s activities have been identified, we can follow
the process in the SOO-PIN [16] to derive the relationships
between cars. The fuzzy mechanisms and logical combination
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TABLE I
RESULTS FORCAR c4_98 WHEN INPUTSAREV = 0:63, �V = 0:036,�R = 0:0, AND �V O = 0:07

TABLE II
RESULTS FORCAR c5_98 WHEN INPUTSAREV = 0:74, �V = 1:59, �R = 0:0, AND �V O = 0:12

TABLE III
RESULTS FORCAR c6_98 WHEN INPUTSAREV = 0:65,�V = 0:16,�R = 0:86, AND �V O = 0:24

rules used by SOO-PIN attach a fuzzy integral value to each pos-
sible interpretation of car activity in the monitored scene. The
belief measures are used to modify the linguistic output of the
system as describe in Section IV-C and thereafter.

Table V shows the correspondence between the values of
any belief measure and the linguistic hedges used to modify
SOO-PIN output statement.

For instance, in the following output from the system:

Give Way to left-turner car c turning right from

west has probably given way to car c from east

the hedge “probably” is inserted before the verb “given way”
because the activity interpretation had a total belief value of
0.67.
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TABLE IV
RESULTS FORCAR c7_98 WHEN INPUTSAREV = 0:67,�V = 0:21,�R = 0:0, AND �V O = 0:41

TABLE V
CORRESPONDENCEBETWEEN TOTAL BELIEF MEASURES AND

LINGUISTIC HEDGES

V. RESULTS

Fig. 17 shows a typical input image together with an inter-
mediate result showing positions of cars found and their veloc-
ities (indicated by arrows whose length is proportional to car
speed), if any, within the intersection boundary. The intersection
boundary is input manually. If camera position is fixed, this has
to be done once at the system initialization. North is up in both
views. The following shows the SOO-PIN generated interpreta-
tion of the activity of one car, c5_116.

Give Way to oncoming car c turning right from

west has probably given way to car c from east

(14a)

Give Way to oncoming car c turning right from

west has possibly given way to car c from east

(14b)

Give Way to oncoming car c turning right from

west has probably given way to car c from east

(14c)

Give Way to left -turner car c turning right from

west has possibly given way to car c from east

(14d)

Give Way to left -turner car c turning right from

Fig. 17. (a) Traffic scene, middle image of the triple. (b) Cars found by system
with labels attached, and velocity given by arrow lengths.

west has possibly given way to car c from east

(14e)

Give Way to left -turner car c turning right from

west has probably given way to car c from west

(14f)
The fuzzy SOO-PIN correctly found each interaction

between c5_116 and the other cars. However, SOO-PIN
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completely ignored the black car at top right in Fig. 17(a),
which was not detected because its intensity merged it with
the background. The carsc and c are visible for
only two frames, so the algorithm does not interpret other car
activities for them, but their activities are interpreted for the
other cars [as in (14a) and (14b)]. In this example SOO-PIN
produced interpretations similar to (14a)–(14f) for all other
four cars: c1_116, c2_116, c6_116, and c7_116, which resulted
in a total of 30 interpretation statements. Table VI shows the
fuzzy belief measures computed by (11) and were used in
interpretation (14a)–(14f).

Cars and have very high values because
they are stopped and thus have arbitrary headings. Trajectory
beliefs are such as those in Table VI then fed into the higher
level interpreter (figure hierarchy) and are incorporated in the
final belief values generated by SOO-PIN.

The next example (Fig. 18) depicts another intersection, with
a lower camera resulting in an oblique view. Conventions are the
same as in Fig. 17: north is up, the intersection boundary is man-
ually inserted, and arrow lengths are proportional to car speeds.
This camera angle stresses the system, reducing the rectangu-
larity of some of the cars and thus reducing the output fuzzy
beliefs. Note, however, that all seven cars, including partially
occluded car c3, are correctly detected during the segmentation
procedure. Sample interpretations are given as follows:

Give Way to left-turner car c turning right from

west has possibly given way to car c from east

(15a)

Give Way to left -turner car c turning right from

west has possibly given way to car c from east

(15b)

In this case, every car activity was correctly identified, and
interactions in the interpretation shown in (15a) and (15b) are
correct. You can see from the lengths of the arrows how c2
and c7 are speeding through the intersection, and the turners
are creeping forward with short but correctly oriented velocity
arrows. The linguistic hedge “possibly” has been generated in
interpretations (15a) and (15b), reflecting the lower values of
the belief measure for this situation.

Finally, Fig. 19 shows a case where an illegal turn occurred.
conventions are as in previous figures. This is a T-intersection
( ), with the straight-through traffic traveling east–west.
The intersecting roadway enters the east–west thoughway from
the south, and the intersection is barely visible in Fig. 19. A
sample interpretation follows:

Illegal car c from east is possibly doing a right

turn on the wrong side of (16)

The car, c5_316, is doing an illegal U-turn across tram tracks
in the intersection from the east and back to the east, currently
facing north west. The system detects that c5_316 is at an
unusual angle in this T-intersection and deduces that it is doing
a right-turn illegally, i.e., into a nonroad [remember this is in
Australia, where cars are moving toward us in Fig. 19 in the

TABLE VI
PARAMETER VALUES AND BELIEF MEASURES FORGENERATING THE

STATEMENTS IN (14a)–(14f)

Fig. 18. Traffic scene. (a) Middle image of the triple. (b) Processed image with
car labels. Velocities are shown as arrow lengths. The intersection boundary is
input manually; north is up.

bottom of the image from right to left (east to west)]. Since the
other cars did not have three frames for processing, the fuzzy
SOO-PIN can produce only the single interpretation output
with the linguistic hedge “possibly.” Another running sequence
can be viewed on the website: http://www.cs.mu.oz.au/~zliu on
the UNIX system and can be played with the UNIX command
mpeg_play.
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Fig. 19. Traffic scene. T-intersection with car doing illegal U-turn. Oblique
view looking east. (a) The second (middle) image of the triple. There is a
intersection close to the bottom right-hand corner (on the south boundary) of
the image, where a light colored car is turning left (due south). (b) Processed
image with car labels, where the boundary was manually defined for the
camera at this intersection.

To judge the effectiveness of the fuzzy sets and measures,
the system described was run on 27 images (nine triples of
frames, three sets of triples from three different intersections),
when using our original version (thecrisptversion) of SOO-PIN
[16] that does not use the fuzzy neasures, we obtained 19 cor-
rect interpretations and five erroneous interpretations (i.e., 79%
correct), as judged by visual inspection. When the interpreta-
tions were weighted by fuzzy beliefs, the accuracy increased to
89%. This indicates that several of the wrong interpretations in
the crisp system have lower-than-average belief values, in other
words, that our fuzzy belief calculations improved system per-
formance by more than 12% for this small set of test cases. All
of the wrong interpretations in both versions of SOO-PIN in-
volved cars that were segmented into two regions due to a sec-
tion of the car merging with the background, or being obscured
by foreground. On an old Sun SparcStation II, the high-level
(Parlog ) processing took 97.4 s of CPU time to process
the nine scene triples, i.e., just over 10 s per scene. This was
achieved with no attempt to optimize the system for speed. In
all our tests, the images were digitized using an Abekas Digital
Video system and were in , 24-bit RGB format.

VI. CONCLUSION

We have presented a new approach to interpretation of
dynamic object interactions in temoral image sequences using
fuzzy sets and measures. To track and classify moving objects
we used a multidimensional filter-based tracking algorithm and
a simple MLP. Uncertainties in the assignment of trajectories
and the description of objects can be handled effectively by
fuzzy logic and fuzzy measures.

The effectiveness of our system was demonstrated in the do-
main of complex traffic scene analysis. We discussed the uncer-
tainties present in the description ofcar-ness, vehicle speed, ve-
hicle trajectories, and other activities in traffic scenes. We used
different fuzzy membership functions to represent and manipu-
late these uncertainties.

Our experiments show that the incorporation of fuzzy mech-
anisms enables the system to handle diverse uncertain situations
and to produce natural and consistent results.

At present, the use of fuzzy measures in SOO-PIN is limited
to performing the correspondence for car velocity determina-
tion, identifying segments as cars, and modifying the car ac-
tivity calculations with belief measures. We hope to extend the
use of fuzzy measures throughout the SOO-PIN network. We
believe this will usefully refine interpretative power in scene
understanding. Recently, we have developed a new low-level
processing technique using motion cue and fuzzy measures for
detecting cars that have lower contrast [26]. We believe using
fuzzy measure at low-level processing will further improve the
system performance.

Moreover, we are currently extending our system to analyze
more complicated and subtle cases such as autonomous robots,
software agents, traffic interpretation, air-combat training, and
medical information analysis.
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